Metamath Proof Explorer


Theorem lcoop

Description: A linear combination as operation. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b B = Base M
lcoop.s S = Scalar M
lcoop.r R = Base S
Assertion lcoop M X V 𝒫 B M LinCo V = c B | s R V finSupp 0 S s c = s linC M V

Proof

Step Hyp Ref Expression
1 lcoop.b B = Base M
2 lcoop.s S = Scalar M
3 lcoop.r R = Base S
4 elex M X M V
5 4 adantr M X V 𝒫 B M V
6 1 pweqi 𝒫 B = 𝒫 Base M
7 6 eleq2i V 𝒫 B V 𝒫 Base M
8 7 biimpi V 𝒫 B V 𝒫 Base M
9 8 adantl M X V 𝒫 B V 𝒫 Base M
10 1 fvexi B V
11 rabexg B V c B | s R V finSupp 0 S s c = s linC M V V
12 10 11 mp1i M X V 𝒫 B c B | s R V finSupp 0 S s c = s linC M V V
13 fveq2 m = M Base m = Base M
14 13 1 eqtr4di m = M Base m = B
15 14 adantr m = M v = V Base m = B
16 2fveq3 m = M Base Scalar m = Base Scalar M
17 16 adantr m = M v = V Base Scalar m = Base Scalar M
18 2 fveq2i Base S = Base Scalar M
19 3 18 eqtri R = Base Scalar M
20 17 19 eqtr4di m = M v = V Base Scalar m = R
21 simpr m = M v = V v = V
22 20 21 oveq12d m = M v = V Base Scalar m v = R V
23 2fveq3 m = M 0 Scalar m = 0 Scalar M
24 2 a1i m = M S = Scalar M
25 24 eqcomd m = M Scalar M = S
26 25 fveq2d m = M 0 Scalar M = 0 S
27 23 26 eqtrd m = M 0 Scalar m = 0 S
28 27 adantr m = M v = V 0 Scalar m = 0 S
29 28 breq2d m = M v = V finSupp 0 Scalar m s finSupp 0 S s
30 fveq2 m = M linC m = linC M
31 30 adantr m = M v = V linC m = linC M
32 eqidd m = M v = V s = s
33 31 32 21 oveq123d m = M v = V s linC m v = s linC M V
34 33 eqeq2d m = M v = V c = s linC m v c = s linC M V
35 29 34 anbi12d m = M v = V finSupp 0 Scalar m s c = s linC m v finSupp 0 S s c = s linC M V
36 22 35 rexeqbidv m = M v = V s Base Scalar m v finSupp 0 Scalar m s c = s linC m v s R V finSupp 0 S s c = s linC M V
37 15 36 rabeqbidv m = M v = V c Base m | s Base Scalar m v finSupp 0 Scalar m s c = s linC m v = c B | s R V finSupp 0 S s c = s linC M V
38 13 pweqd m = M 𝒫 Base m = 𝒫 Base M
39 df-lco LinCo = m V , v 𝒫 Base m c Base m | s Base Scalar m v finSupp 0 Scalar m s c = s linC m v
40 37 38 39 ovmpox M V V 𝒫 Base M c B | s R V finSupp 0 S s c = s linC M V V M LinCo V = c B | s R V finSupp 0 S s c = s linC M V
41 5 9 12 40 syl3anc M X V 𝒫 B M LinCo V = c B | s R V finSupp 0 S s c = s linC M V