Metamath Proof Explorer


Theorem lcoop

Description: A linear combination as operation. (Contributed by AV, 5-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lcoop.b B=BaseM
lcoop.s S=ScalarM
lcoop.r R=BaseS
Assertion lcoop MXV𝒫BMLinCoV=cB|sRVfinSupp0Ssc=slinCMV

Proof

Step Hyp Ref Expression
1 lcoop.b B=BaseM
2 lcoop.s S=ScalarM
3 lcoop.r R=BaseS
4 elex MXMV
5 4 adantr MXV𝒫BMV
6 1 pweqi 𝒫B=𝒫BaseM
7 6 eleq2i V𝒫BV𝒫BaseM
8 7 biimpi V𝒫BV𝒫BaseM
9 8 adantl MXV𝒫BV𝒫BaseM
10 1 fvexi BV
11 rabexg BVcB|sRVfinSupp0Ssc=slinCMVV
12 10 11 mp1i MXV𝒫BcB|sRVfinSupp0Ssc=slinCMVV
13 fveq2 m=MBasem=BaseM
14 13 1 eqtr4di m=MBasem=B
15 14 adantr m=Mv=VBasem=B
16 2fveq3 m=MBaseScalarm=BaseScalarM
17 16 adantr m=Mv=VBaseScalarm=BaseScalarM
18 2 fveq2i BaseS=BaseScalarM
19 3 18 eqtri R=BaseScalarM
20 17 19 eqtr4di m=Mv=VBaseScalarm=R
21 simpr m=Mv=Vv=V
22 20 21 oveq12d m=Mv=VBaseScalarmv=RV
23 2fveq3 m=M0Scalarm=0ScalarM
24 2 a1i m=MS=ScalarM
25 24 eqcomd m=MScalarM=S
26 25 fveq2d m=M0ScalarM=0S
27 23 26 eqtrd m=M0Scalarm=0S
28 27 adantr m=Mv=V0Scalarm=0S
29 28 breq2d m=Mv=VfinSupp0ScalarmsfinSupp0Ss
30 fveq2 m=MlinCm=linCM
31 30 adantr m=Mv=VlinCm=linCM
32 eqidd m=Mv=Vs=s
33 31 32 21 oveq123d m=Mv=VslinCmv=slinCMV
34 33 eqeq2d m=Mv=Vc=slinCmvc=slinCMV
35 29 34 anbi12d m=Mv=VfinSupp0Scalarmsc=slinCmvfinSupp0Ssc=slinCMV
36 22 35 rexeqbidv m=Mv=VsBaseScalarmvfinSupp0Scalarmsc=slinCmvsRVfinSupp0Ssc=slinCMV
37 15 36 rabeqbidv m=Mv=VcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv=cB|sRVfinSupp0Ssc=slinCMV
38 13 pweqd m=M𝒫Basem=𝒫BaseM
39 df-lco LinCo=mV,v𝒫BasemcBasem|sBaseScalarmvfinSupp0Scalarmsc=slinCmv
40 37 38 39 ovmpox MVV𝒫BaseMcB|sRVfinSupp0Ssc=slinCMVVMLinCoV=cB|sRVfinSupp0Ssc=slinCMV
41 5 9 12 40 syl3anc MXV𝒫BMLinCoV=cB|sRVfinSupp0Ssc=slinCMV