Metamath Proof Explorer


Definition df-linc

Description: Define the operation constructing a linear combination. Although this definition is taylored for linear combinations of vectors from left modules, it can be used for any structure having a Base , Scalar s and a scalar multiplication .s . (Contributed by AV, 29-Mar-2019)

Ref Expression
Assertion df-linc linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinc linC
1 vm 𝑚
2 cvv V
3 vs 𝑠
4 cbs Base
5 csca Scalar
6 1 cv 𝑚
7 6 5 cfv ( Scalar ‘ 𝑚 )
8 7 4 cfv ( Base ‘ ( Scalar ‘ 𝑚 ) )
9 cmap m
10 vv 𝑣
11 10 cv 𝑣
12 8 11 9 co ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 )
13 6 4 cfv ( Base ‘ 𝑚 )
14 13 cpw 𝒫 ( Base ‘ 𝑚 )
15 cgsu Σg
16 vx 𝑥
17 3 cv 𝑠
18 16 cv 𝑥
19 18 17 cfv ( 𝑠𝑥 )
20 cvsca ·𝑠
21 6 20 cfv ( ·𝑠𝑚 )
22 19 18 21 co ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 )
23 16 11 22 cmpt ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) )
24 6 23 15 co ( 𝑚 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) ) )
25 3 10 12 14 24 cmpo ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) ) ) )
26 1 2 25 cmpt ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) ) ) ) )
27 0 26 wceq linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥𝑣 ↦ ( ( 𝑠𝑥 ) ( ·𝑠𝑚 ) 𝑥 ) ) ) ) )