Step |
Hyp |
Ref |
Expression |
0 |
|
clinc |
⊢ linC |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cbs |
⊢ Base |
5 |
|
csca |
⊢ Scalar |
6 |
1
|
cv |
⊢ 𝑚 |
7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
8 |
7 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
9 |
|
cmap |
⊢ ↑m |
10 |
|
vv |
⊢ 𝑣 |
11 |
10
|
cv |
⊢ 𝑣 |
12 |
8 11 9
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) |
13 |
6 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
14 |
13
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
15 |
|
cgsu |
⊢ Σg |
16 |
|
vx |
⊢ 𝑥 |
17 |
3
|
cv |
⊢ 𝑠 |
18 |
16
|
cv |
⊢ 𝑥 |
19 |
18 17
|
cfv |
⊢ ( 𝑠 ‘ 𝑥 ) |
20 |
|
cvsca |
⊢ ·𝑠 |
21 |
6 20
|
cfv |
⊢ ( ·𝑠 ‘ 𝑚 ) |
22 |
19 18 21
|
co |
⊢ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) |
23 |
16 11 22
|
cmpt |
⊢ ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) |
24 |
6 23 15
|
co |
⊢ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) |
25 |
3 10 12 14 24
|
cmpo |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) |
26 |
1 2 25
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) ) |
27 |
0 26
|
wceq |
⊢ linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) ) |