| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clinc |
⊢ linC |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
|
csca |
⊢ Scalar |
| 6 |
1
|
cv |
⊢ 𝑚 |
| 7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
| 8 |
7 4
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
| 9 |
|
cmap |
⊢ ↑m |
| 10 |
|
vv |
⊢ 𝑣 |
| 11 |
10
|
cv |
⊢ 𝑣 |
| 12 |
8 11 9
|
co |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) |
| 13 |
6 4
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
| 14 |
13
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑚 ) |
| 15 |
|
cgsu |
⊢ Σg |
| 16 |
|
vx |
⊢ 𝑥 |
| 17 |
3
|
cv |
⊢ 𝑠 |
| 18 |
16
|
cv |
⊢ 𝑥 |
| 19 |
18 17
|
cfv |
⊢ ( 𝑠 ‘ 𝑥 ) |
| 20 |
|
cvsca |
⊢ ·𝑠 |
| 21 |
6 20
|
cfv |
⊢ ( ·𝑠 ‘ 𝑚 ) |
| 22 |
19 18 21
|
co |
⊢ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) |
| 23 |
16 11 22
|
cmpt |
⊢ ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) |
| 24 |
6 23 15
|
co |
⊢ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) |
| 25 |
3 10 12 14 24
|
cmpo |
⊢ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) |
| 26 |
1 2 25
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) ) |
| 27 |
0 26
|
wceq |
⊢ linC = ( 𝑚 ∈ V ↦ ( 𝑠 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑣 ) , 𝑣 ∈ 𝒫 ( Base ‘ 𝑚 ) ↦ ( 𝑚 Σg ( 𝑥 ∈ 𝑣 ↦ ( ( 𝑠 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑚 ) 𝑥 ) ) ) ) ) |