Metamath Proof Explorer


Definition df-linc

Description: Define the operation constructing a linear combination. Although this definition is taylored for linear combinations of vectors from left modules, it can be used for any structure having a Base , Scalar s and a scalar multiplication .s . (Contributed by AV, 29-Mar-2019)

Ref Expression
Assertion df-linc linC=mVsBaseScalarmv,v𝒫Basemmxvsxmx

Detailed syntax breakdown

Step Hyp Ref Expression
0 clinc classlinC
1 vm setvarm
2 cvv classV
3 vs setvars
4 cbs classBase
5 csca classScalar
6 1 cv setvarm
7 6 5 cfv classScalarm
8 7 4 cfv classBaseScalarm
9 cmap class𝑚
10 vv setvarv
11 10 cv setvarv
12 8 11 9 co classBaseScalarmv
13 6 4 cfv classBasem
14 13 cpw class𝒫Basem
15 cgsu classΣ𝑔
16 vx setvarx
17 3 cv setvars
18 16 cv setvarx
19 18 17 cfv classsx
20 cvsca class𝑠
21 6 20 cfv classm
22 19 18 21 co classsxmx
23 16 11 22 cmpt classxvsxmx
24 6 23 15 co classmxvsxmx
25 3 10 12 14 24 cmpo classsBaseScalarmv,v𝒫Basemmxvsxmx
26 1 2 25 cmpt classmVsBaseScalarmv,v𝒫Basemmxvsxmx
27 0 26 wceq wfflinC=mVsBaseScalarmv,v𝒫Basemmxvsxmx