| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clinc |
|- linC |
| 1 |
|
vm |
|- m |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
cbs |
|- Base |
| 5 |
|
csca |
|- Scalar |
| 6 |
1
|
cv |
|- m |
| 7 |
6 5
|
cfv |
|- ( Scalar ` m ) |
| 8 |
7 4
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
| 9 |
|
cmap |
|- ^m |
| 10 |
|
vv |
|- v |
| 11 |
10
|
cv |
|- v |
| 12 |
8 11 9
|
co |
|- ( ( Base ` ( Scalar ` m ) ) ^m v ) |
| 13 |
6 4
|
cfv |
|- ( Base ` m ) |
| 14 |
13
|
cpw |
|- ~P ( Base ` m ) |
| 15 |
|
cgsu |
|- gsum |
| 16 |
|
vx |
|- x |
| 17 |
3
|
cv |
|- s |
| 18 |
16
|
cv |
|- x |
| 19 |
18 17
|
cfv |
|- ( s ` x ) |
| 20 |
|
cvsca |
|- .s |
| 21 |
6 20
|
cfv |
|- ( .s ` m ) |
| 22 |
19 18 21
|
co |
|- ( ( s ` x ) ( .s ` m ) x ) |
| 23 |
16 11 22
|
cmpt |
|- ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) |
| 24 |
6 23 15
|
co |
|- ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) |
| 25 |
3 10 12 14 24
|
cmpo |
|- ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) |
| 26 |
1 2 25
|
cmpt |
|- ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) ) |
| 27 |
0 26
|
wceq |
|- linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) ) |