Step |
Hyp |
Ref |
Expression |
0 |
|
clinc |
|- linC |
1 |
|
vm |
|- m |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
|
csca |
|- Scalar |
6 |
1
|
cv |
|- m |
7 |
6 5
|
cfv |
|- ( Scalar ` m ) |
8 |
7 4
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
9 |
|
cmap |
|- ^m |
10 |
|
vv |
|- v |
11 |
10
|
cv |
|- v |
12 |
8 11 9
|
co |
|- ( ( Base ` ( Scalar ` m ) ) ^m v ) |
13 |
6 4
|
cfv |
|- ( Base ` m ) |
14 |
13
|
cpw |
|- ~P ( Base ` m ) |
15 |
|
cgsu |
|- gsum |
16 |
|
vx |
|- x |
17 |
3
|
cv |
|- s |
18 |
16
|
cv |
|- x |
19 |
18 17
|
cfv |
|- ( s ` x ) |
20 |
|
cvsca |
|- .s |
21 |
6 20
|
cfv |
|- ( .s ` m ) |
22 |
19 18 21
|
co |
|- ( ( s ` x ) ( .s ` m ) x ) |
23 |
16 11 22
|
cmpt |
|- ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) |
24 |
6 23 15
|
co |
|- ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) |
25 |
3 10 12 14 24
|
cmpo |
|- ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) |
26 |
1 2 25
|
cmpt |
|- ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) ) |
27 |
0 26
|
wceq |
|- linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( x e. v |-> ( ( s ` x ) ( .s ` m ) x ) ) ) ) ) |