Step |
Hyp |
Ref |
Expression |
1 |
|
df-linc |
|- linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) ) |
2 |
|
elmapfn |
|- ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) -> s Fn v ) |
3 |
2
|
adantr |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> s Fn v ) |
4 |
|
fnresi |
|- ( _I |` v ) Fn v |
5 |
4
|
a1i |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( _I |` v ) Fn v ) |
6 |
|
vex |
|- v e. _V |
7 |
6
|
a1i |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> v e. _V ) |
8 |
|
inidm |
|- ( v i^i v ) = v |
9 |
|
eqidd |
|- ( ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) /\ i e. v ) -> ( s ` i ) = ( s ` i ) ) |
10 |
|
fvresi |
|- ( i e. v -> ( ( _I |` v ) ` i ) = i ) |
11 |
10
|
adantl |
|- ( ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) /\ i e. v ) -> ( ( _I |` v ) ` i ) = i ) |
12 |
3 5 7 7 8 9 11
|
offval |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( s oF ( .s ` m ) ( _I |` v ) ) = ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) |
13 |
12
|
eqcomd |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) = ( s oF ( .s ` m ) ( _I |` v ) ) ) |
14 |
13
|
oveq2d |
|- ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) = ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) |
15 |
14
|
mpoeq3ia |
|- ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) |
16 |
15
|
mpteq2i |
|- ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) ) = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) ) |
17 |
1 16
|
eqtri |
|- linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) ) |