| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-linc |  |-  linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) ) | 
						
							| 2 |  | elmapfn |  |-  ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) -> s Fn v ) | 
						
							| 3 | 2 | adantr |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> s Fn v ) | 
						
							| 4 |  | fnresi |  |-  ( _I |` v ) Fn v | 
						
							| 5 | 4 | a1i |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( _I |` v ) Fn v ) | 
						
							| 6 |  | vex |  |-  v e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> v e. _V ) | 
						
							| 8 |  | inidm |  |-  ( v i^i v ) = v | 
						
							| 9 |  | eqidd |  |-  ( ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) /\ i e. v ) -> ( s ` i ) = ( s ` i ) ) | 
						
							| 10 |  | fvresi |  |-  ( i e. v -> ( ( _I |` v ) ` i ) = i ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) /\ i e. v ) -> ( ( _I |` v ) ` i ) = i ) | 
						
							| 12 | 3 5 7 7 8 9 11 | offval |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( s oF ( .s ` m ) ( _I |` v ) ) = ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) = ( s oF ( .s ` m ) ( _I |` v ) ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) /\ v e. ~P ( Base ` m ) ) -> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) = ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) | 
						
							| 15 | 14 | mpoeq3ia |  |-  ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) = ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) | 
						
							| 16 | 15 | mpteq2i |  |-  ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( i e. v |-> ( ( s ` i ) ( .s ` m ) i ) ) ) ) ) = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) ) | 
						
							| 17 | 1 16 | eqtri |  |-  linC = ( m e. _V |-> ( s e. ( ( Base ` ( Scalar ` m ) ) ^m v ) , v e. ~P ( Base ` m ) |-> ( m gsum ( s oF ( .s ` m ) ( _I |` v ) ) ) ) ) |