Metamath Proof Explorer


Theorem mpoexxg2

Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis mpoexxg2.1 F = x A , y B C
Assertion mpoexxg2 B R y B A S F V

Proof

Step Hyp Ref Expression
1 mpoexxg2.1 F = x A , y B C
2 1 mpofun Fun F
3 1 dmmpossx2 dom F y B A × y
4 snex y V
5 xpexg A S y V A × y V
6 4 5 mpan2 A S A × y V
7 6 ralimi y B A S y B A × y V
8 iunexg B R y B A × y V y B A × y V
9 7 8 sylan2 B R y B A S y B A × y V
10 ssexg dom F y B A × y y B A × y V dom F V
11 3 9 10 sylancr B R y B A S dom F V
12 funex Fun F dom F V F V
13 2 11 12 sylancr B R y B A S F V