Metamath Proof Explorer


Theorem dmmpossx2

Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis dmmpossx2.1 F = x A , y B C
Assertion dmmpossx2 dom F y B A × y

Proof

Step Hyp Ref Expression
1 dmmpossx2.1 F = x A , y B C
2 nfcv _ u A
3 nfcsb1v _ y u / y A
4 nfcv _ u C
5 nfcv _ v C
6 nfcv _ x u
7 nfcsb1v _ x v / x C
8 6 7 nfcsbw _ x u / y v / x C
9 nfcsb1v _ y u / y v / x C
10 csbeq1a y = u A = u / y A
11 csbeq1a x = v C = v / x C
12 csbeq1a y = u v / x C = u / y v / x C
13 11 12 sylan9eqr y = u x = v C = u / y v / x C
14 2 3 4 5 8 9 10 13 cbvmpox2 x A , y B C = v u / y A , u B u / y v / x C
15 vex v V
16 vex u V
17 15 16 op2ndd t = v u 2 nd t = u
18 17 csbeq1d t = v u 2 nd t / y 1 st t / x C = u / y 1 st t / x C
19 15 16 op1std t = v u 1 st t = v
20 19 csbeq1d t = v u 1 st t / x C = v / x C
21 20 csbeq2dv t = v u u / y 1 st t / x C = u / y v / x C
22 18 21 eqtrd t = v u 2 nd t / y 1 st t / x C = u / y v / x C
23 22 mpomptx2 t u B u / y A × u 2 nd t / y 1 st t / x C = v u / y A , u B u / y v / x C
24 14 1 23 3eqtr4i F = t u B u / y A × u 2 nd t / y 1 st t / x C
25 24 dmmptss dom F u B u / y A × u
26 nfcv _ u A × y
27 nfcv _ y u
28 3 27 nfxp _ y u / y A × u
29 sneq y = u y = u
30 10 29 xpeq12d y = u A × y = u / y A × u
31 26 28 30 cbviun y B A × y = u B u / y A × u
32 25 31 sseqtrri dom F y B A × y