| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmmpossx2.1 |
|- F = ( x e. A , y e. B |-> C ) |
| 2 |
|
nfcv |
|- F/_ u A |
| 3 |
|
nfcsb1v |
|- F/_ y [_ u / y ]_ A |
| 4 |
|
nfcv |
|- F/_ u C |
| 5 |
|
nfcv |
|- F/_ v C |
| 6 |
|
nfcv |
|- F/_ x u |
| 7 |
|
nfcsb1v |
|- F/_ x [_ v / x ]_ C |
| 8 |
6 7
|
nfcsbw |
|- F/_ x [_ u / y ]_ [_ v / x ]_ C |
| 9 |
|
nfcsb1v |
|- F/_ y [_ u / y ]_ [_ v / x ]_ C |
| 10 |
|
csbeq1a |
|- ( y = u -> A = [_ u / y ]_ A ) |
| 11 |
|
csbeq1a |
|- ( x = v -> C = [_ v / x ]_ C ) |
| 12 |
|
csbeq1a |
|- ( y = u -> [_ v / x ]_ C = [_ u / y ]_ [_ v / x ]_ C ) |
| 13 |
11 12
|
sylan9eqr |
|- ( ( y = u /\ x = v ) -> C = [_ u / y ]_ [_ v / x ]_ C ) |
| 14 |
2 3 4 5 8 9 10 13
|
cbvmpox2 |
|- ( x e. A , y e. B |-> C ) = ( v e. [_ u / y ]_ A , u e. B |-> [_ u / y ]_ [_ v / x ]_ C ) |
| 15 |
|
vex |
|- v e. _V |
| 16 |
|
vex |
|- u e. _V |
| 17 |
15 16
|
op2ndd |
|- ( t = <. v , u >. -> ( 2nd ` t ) = u ) |
| 18 |
17
|
csbeq1d |
|- ( t = <. v , u >. -> [_ ( 2nd ` t ) / y ]_ [_ ( 1st ` t ) / x ]_ C = [_ u / y ]_ [_ ( 1st ` t ) / x ]_ C ) |
| 19 |
15 16
|
op1std |
|- ( t = <. v , u >. -> ( 1st ` t ) = v ) |
| 20 |
19
|
csbeq1d |
|- ( t = <. v , u >. -> [_ ( 1st ` t ) / x ]_ C = [_ v / x ]_ C ) |
| 21 |
20
|
csbeq2dv |
|- ( t = <. v , u >. -> [_ u / y ]_ [_ ( 1st ` t ) / x ]_ C = [_ u / y ]_ [_ v / x ]_ C ) |
| 22 |
18 21
|
eqtrd |
|- ( t = <. v , u >. -> [_ ( 2nd ` t ) / y ]_ [_ ( 1st ` t ) / x ]_ C = [_ u / y ]_ [_ v / x ]_ C ) |
| 23 |
22
|
mpomptx2 |
|- ( t e. U_ u e. B ( [_ u / y ]_ A X. { u } ) |-> [_ ( 2nd ` t ) / y ]_ [_ ( 1st ` t ) / x ]_ C ) = ( v e. [_ u / y ]_ A , u e. B |-> [_ u / y ]_ [_ v / x ]_ C ) |
| 24 |
14 1 23
|
3eqtr4i |
|- F = ( t e. U_ u e. B ( [_ u / y ]_ A X. { u } ) |-> [_ ( 2nd ` t ) / y ]_ [_ ( 1st ` t ) / x ]_ C ) |
| 25 |
24
|
dmmptss |
|- dom F C_ U_ u e. B ( [_ u / y ]_ A X. { u } ) |
| 26 |
|
nfcv |
|- F/_ u ( A X. { y } ) |
| 27 |
|
nfcv |
|- F/_ y { u } |
| 28 |
3 27
|
nfxp |
|- F/_ y ( [_ u / y ]_ A X. { u } ) |
| 29 |
|
sneq |
|- ( y = u -> { y } = { u } ) |
| 30 |
10 29
|
xpeq12d |
|- ( y = u -> ( A X. { y } ) = ( [_ u / y ]_ A X. { u } ) ) |
| 31 |
26 28 30
|
cbviun |
|- U_ y e. B ( A X. { y } ) = U_ u e. B ( [_ u / y ]_ A X. { u } ) |
| 32 |
25 31
|
sseqtrri |
|- dom F C_ U_ y e. B ( A X. { y } ) |