Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpox2.1 |
|- F/_ z A |
2 |
|
cbvmpox2.2 |
|- F/_ y D |
3 |
|
cbvmpox2.3 |
|- F/_ z C |
4 |
|
cbvmpox2.4 |
|- F/_ w C |
5 |
|
cbvmpox2.5 |
|- F/_ x E |
6 |
|
cbvmpox2.6 |
|- F/_ y E |
7 |
|
cbvmpox2.7 |
|- ( y = z -> A = D ) |
8 |
|
cbvmpox2.8 |
|- ( ( y = z /\ x = w ) -> C = E ) |
9 |
|
nfv |
|- F/ w x e. A |
10 |
|
nfv |
|- F/ w y e. B |
11 |
9 10
|
nfan |
|- F/ w ( x e. A /\ y e. B ) |
12 |
4
|
nfeq2 |
|- F/ w u = C |
13 |
11 12
|
nfan |
|- F/ w ( ( x e. A /\ y e. B ) /\ u = C ) |
14 |
1
|
nfcri |
|- F/ z x e. A |
15 |
|
nfv |
|- F/ z y e. B |
16 |
14 15
|
nfan |
|- F/ z ( x e. A /\ y e. B ) |
17 |
3
|
nfeq2 |
|- F/ z u = C |
18 |
16 17
|
nfan |
|- F/ z ( ( x e. A /\ y e. B ) /\ u = C ) |
19 |
|
nfv |
|- F/ x w e. D |
20 |
|
nfv |
|- F/ x z e. B |
21 |
19 20
|
nfan |
|- F/ x ( w e. D /\ z e. B ) |
22 |
5
|
nfeq2 |
|- F/ x u = E |
23 |
21 22
|
nfan |
|- F/ x ( ( w e. D /\ z e. B ) /\ u = E ) |
24 |
2
|
nfcri |
|- F/ y w e. D |
25 |
|
nfv |
|- F/ y z e. B |
26 |
24 25
|
nfan |
|- F/ y ( w e. D /\ z e. B ) |
27 |
6
|
nfeq2 |
|- F/ y u = E |
28 |
26 27
|
nfan |
|- F/ y ( ( w e. D /\ z e. B ) /\ u = E ) |
29 |
|
eleq1w |
|- ( x = w -> ( x e. A <-> w e. A ) ) |
30 |
7
|
eleq2d |
|- ( y = z -> ( w e. A <-> w e. D ) ) |
31 |
29 30
|
sylan9bb |
|- ( ( x = w /\ y = z ) -> ( x e. A <-> w e. D ) ) |
32 |
|
simpr |
|- ( ( x = w /\ y = z ) -> y = z ) |
33 |
32
|
eleq1d |
|- ( ( x = w /\ y = z ) -> ( y e. B <-> z e. B ) ) |
34 |
31 33
|
anbi12d |
|- ( ( x = w /\ y = z ) -> ( ( x e. A /\ y e. B ) <-> ( w e. D /\ z e. B ) ) ) |
35 |
8
|
ancoms |
|- ( ( x = w /\ y = z ) -> C = E ) |
36 |
35
|
eqeq2d |
|- ( ( x = w /\ y = z ) -> ( u = C <-> u = E ) ) |
37 |
34 36
|
anbi12d |
|- ( ( x = w /\ y = z ) -> ( ( ( x e. A /\ y e. B ) /\ u = C ) <-> ( ( w e. D /\ z e. B ) /\ u = E ) ) ) |
38 |
13 18 23 28 37
|
cbvoprab12 |
|- { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } = { <. <. w , z >. , u >. | ( ( w e. D /\ z e. B ) /\ u = E ) } |
39 |
|
df-mpo |
|- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } |
40 |
|
df-mpo |
|- ( w e. D , z e. B |-> E ) = { <. <. w , z >. , u >. | ( ( w e. D /\ z e. B ) /\ u = E ) } |
41 |
38 39 40
|
3eqtr4i |
|- ( x e. A , y e. B |-> C ) = ( w e. D , z e. B |-> E ) |