Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpox2.1 |
⊢ Ⅎ 𝑧 𝐴 |
2 |
|
cbvmpox2.2 |
⊢ Ⅎ 𝑦 𝐷 |
3 |
|
cbvmpox2.3 |
⊢ Ⅎ 𝑧 𝐶 |
4 |
|
cbvmpox2.4 |
⊢ Ⅎ 𝑤 𝐶 |
5 |
|
cbvmpox2.5 |
⊢ Ⅎ 𝑥 𝐸 |
6 |
|
cbvmpox2.6 |
⊢ Ⅎ 𝑦 𝐸 |
7 |
|
cbvmpox2.7 |
⊢ ( 𝑦 = 𝑧 → 𝐴 = 𝐷 ) |
8 |
|
cbvmpox2.8 |
⊢ ( ( 𝑦 = 𝑧 ∧ 𝑥 = 𝑤 ) → 𝐶 = 𝐸 ) |
9 |
|
nfv |
⊢ Ⅎ 𝑤 𝑥 ∈ 𝐴 |
10 |
|
nfv |
⊢ Ⅎ 𝑤 𝑦 ∈ 𝐵 |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
12 |
4
|
nfeq2 |
⊢ Ⅎ 𝑤 𝑢 = 𝐶 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
14 |
1
|
nfcri |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
15 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
16 |
14 15
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
17 |
3
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
18 |
16 17
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐵 |
21 |
19 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) |
22 |
5
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
23 |
21 22
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) |
24 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝐷 |
25 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
26 |
24 25
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) |
27 |
6
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑢 = 𝐸 |
28 |
26 27
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) |
29 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
30 |
7
|
eleq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷 ) ) |
31 |
29 30
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷 ) ) |
32 |
|
simpr |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) |
33 |
32
|
eleq1d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
34 |
31 33
|
anbi12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ) ) |
35 |
8
|
ancoms |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → 𝐶 = 𝐸 ) |
36 |
35
|
eqeq2d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
37 |
34 36
|
anbi12d |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) ) ) |
38 |
13 18 23 28 37
|
cbvoprab12 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑤 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
39 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
40 |
|
df-mpo |
⊢ ( 𝑤 ∈ 𝐷 , 𝑧 ∈ 𝐵 ↦ 𝐸 ) = { 〈 〈 𝑤 , 𝑧 〉 , 𝑢 〉 ∣ ( ( 𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
41 |
38 39 40
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑤 ∈ 𝐷 , 𝑧 ∈ 𝐵 ↦ 𝐸 ) |