Metamath Proof Explorer


Theorem cbvmpox2

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows A to be a function of y , analogous to cbvmpox . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypotheses cbvmpox2.1 _ z A
cbvmpox2.2 _ y D
cbvmpox2.3 _ z C
cbvmpox2.4 _ w C
cbvmpox2.5 _ x E
cbvmpox2.6 _ y E
cbvmpox2.7 y = z A = D
cbvmpox2.8 y = z x = w C = E
Assertion cbvmpox2 x A , y B C = w D , z B E

Proof

Step Hyp Ref Expression
1 cbvmpox2.1 _ z A
2 cbvmpox2.2 _ y D
3 cbvmpox2.3 _ z C
4 cbvmpox2.4 _ w C
5 cbvmpox2.5 _ x E
6 cbvmpox2.6 _ y E
7 cbvmpox2.7 y = z A = D
8 cbvmpox2.8 y = z x = w C = E
9 nfv w x A
10 nfv w y B
11 9 10 nfan w x A y B
12 4 nfeq2 w u = C
13 11 12 nfan w x A y B u = C
14 1 nfcri z x A
15 nfv z y B
16 14 15 nfan z x A y B
17 3 nfeq2 z u = C
18 16 17 nfan z x A y B u = C
19 nfv x w D
20 nfv x z B
21 19 20 nfan x w D z B
22 5 nfeq2 x u = E
23 21 22 nfan x w D z B u = E
24 2 nfcri y w D
25 nfv y z B
26 24 25 nfan y w D z B
27 6 nfeq2 y u = E
28 26 27 nfan y w D z B u = E
29 eleq1w x = w x A w A
30 7 eleq2d y = z w A w D
31 29 30 sylan9bb x = w y = z x A w D
32 simpr x = w y = z y = z
33 32 eleq1d x = w y = z y B z B
34 31 33 anbi12d x = w y = z x A y B w D z B
35 8 ancoms x = w y = z C = E
36 35 eqeq2d x = w y = z u = C u = E
37 34 36 anbi12d x = w y = z x A y B u = C w D z B u = E
38 13 18 23 28 37 cbvoprab12 x y u | x A y B u = C = w z u | w D z B u = E
39 df-mpo x A , y B C = x y u | x A y B u = C
40 df-mpo w D , z B E = w z u | w D z B u = E
41 38 39 40 3eqtr4i x A , y B C = w D , z B E