Metamath Proof Explorer


Theorem cbvmpox2

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows A to be a function of y , analogous to cbvmpox . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypotheses cbvmpox2.1 _zA
cbvmpox2.2 _yD
cbvmpox2.3 _zC
cbvmpox2.4 _wC
cbvmpox2.5 _xE
cbvmpox2.6 _yE
cbvmpox2.7 y=zA=D
cbvmpox2.8 y=zx=wC=E
Assertion cbvmpox2 xA,yBC=wD,zBE

Proof

Step Hyp Ref Expression
1 cbvmpox2.1 _zA
2 cbvmpox2.2 _yD
3 cbvmpox2.3 _zC
4 cbvmpox2.4 _wC
5 cbvmpox2.5 _xE
6 cbvmpox2.6 _yE
7 cbvmpox2.7 y=zA=D
8 cbvmpox2.8 y=zx=wC=E
9 nfv wxA
10 nfv wyB
11 9 10 nfan wxAyB
12 4 nfeq2 wu=C
13 11 12 nfan wxAyBu=C
14 1 nfcri zxA
15 nfv zyB
16 14 15 nfan zxAyB
17 3 nfeq2 zu=C
18 16 17 nfan zxAyBu=C
19 nfv xwD
20 nfv xzB
21 19 20 nfan xwDzB
22 5 nfeq2 xu=E
23 21 22 nfan xwDzBu=E
24 2 nfcri ywD
25 nfv yzB
26 24 25 nfan ywDzB
27 6 nfeq2 yu=E
28 26 27 nfan ywDzBu=E
29 eleq1w x=wxAwA
30 7 eleq2d y=zwAwD
31 29 30 sylan9bb x=wy=zxAwD
32 simpr x=wy=zy=z
33 32 eleq1d x=wy=zyBzB
34 31 33 anbi12d x=wy=zxAyBwDzB
35 8 ancoms x=wy=zC=E
36 35 eqeq2d x=wy=zu=Cu=E
37 34 36 anbi12d x=wy=zxAyBu=CwDzBu=E
38 13 18 23 28 37 cbvoprab12 xyu|xAyBu=C=wzu|wDzBu=E
39 df-mpo xA,yBC=xyu|xAyBu=C
40 df-mpo wD,zBE=wzu|wDzBu=E
41 38 39 40 3eqtr4i xA,yBC=wD,zBE