Metamath Proof Explorer


Theorem cbvmpox

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows B to be a function of x . (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses cbvmpox.1 _zB
cbvmpox.2 _xD
cbvmpox.3 _zC
cbvmpox.4 _wC
cbvmpox.5 _xE
cbvmpox.6 _yE
cbvmpox.7 x=zB=D
cbvmpox.8 x=zy=wC=E
Assertion cbvmpox xA,yBC=zA,wDE

Proof

Step Hyp Ref Expression
1 cbvmpox.1 _zB
2 cbvmpox.2 _xD
3 cbvmpox.3 _zC
4 cbvmpox.4 _wC
5 cbvmpox.5 _xE
6 cbvmpox.6 _yE
7 cbvmpox.7 x=zB=D
8 cbvmpox.8 x=zy=wC=E
9 nfv zxA
10 1 nfcri zyB
11 9 10 nfan zxAyB
12 3 nfeq2 zu=C
13 11 12 nfan zxAyBu=C
14 nfv wxA
15 nfcv _wB
16 15 nfcri wyB
17 14 16 nfan wxAyB
18 4 nfeq2 wu=C
19 17 18 nfan wxAyBu=C
20 nfv xzA
21 2 nfcri xwD
22 20 21 nfan xzAwD
23 5 nfeq2 xu=E
24 22 23 nfan xzAwDu=E
25 nfv yzAwD
26 6 nfeq2 yu=E
27 25 26 nfan yzAwDu=E
28 eleq1w x=zxAzA
29 28 adantr x=zy=wxAzA
30 7 eleq2d x=zyByD
31 eleq1w y=wyDwD
32 30 31 sylan9bb x=zy=wyBwD
33 29 32 anbi12d x=zy=wxAyBzAwD
34 8 eqeq2d x=zy=wu=Cu=E
35 33 34 anbi12d x=zy=wxAyBu=CzAwDu=E
36 13 19 24 27 35 cbvoprab12 xyu|xAyBu=C=zwu|zAwDu=E
37 df-mpo xA,yBC=xyu|xAyBu=C
38 df-mpo zA,wDE=zwu|zAwDu=E
39 36 37 38 3eqtr4i xA,yBC=zA,wDE