Metamath Proof Explorer


Theorem cbvoprab12

Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses cbvoprab12.1 wφ
cbvoprab12.2 vφ
cbvoprab12.3 xψ
cbvoprab12.4 yψ
cbvoprab12.5 x=wy=vφψ
Assertion cbvoprab12 xyz|φ=wvz|ψ

Proof

Step Hyp Ref Expression
1 cbvoprab12.1 wφ
2 cbvoprab12.2 vφ
3 cbvoprab12.3 xψ
4 cbvoprab12.4 yψ
5 cbvoprab12.5 x=wy=vφψ
6 nfv wu=xy
7 6 1 nfan wu=xyφ
8 nfv vu=xy
9 8 2 nfan vu=xyφ
10 nfv xu=wv
11 10 3 nfan xu=wvψ
12 nfv yu=wv
13 12 4 nfan yu=wvψ
14 opeq12 x=wy=vxy=wv
15 14 eqeq2d x=wy=vu=xyu=wv
16 15 5 anbi12d x=wy=vu=xyφu=wvψ
17 7 9 11 13 16 cbvex2v xyu=xyφwvu=wvψ
18 17 opabbii uz|xyu=xyφ=uz|wvu=wvψ
19 dfoprab2 xyz|φ=uz|xyu=xyφ
20 dfoprab2 wvz|ψ=uz|wvu=wvψ
21 18 19 20 3eqtr4i xyz|φ=wvz|ψ