Metamath Proof Explorer


Theorem cbvex2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Sep-2003) (Revised by BJ, 16-Jun-2019)

Ref Expression
Hypotheses cbval2v.1 zφ
cbval2v.2 wφ
cbval2v.3 xψ
cbval2v.4 yψ
cbval2v.5 x=zy=wφψ
Assertion cbvex2v xyφzwψ

Proof

Step Hyp Ref Expression
1 cbval2v.1 zφ
2 cbval2v.2 wφ
3 cbval2v.3 xψ
4 cbval2v.4 yψ
5 cbval2v.5 x=zy=wφψ
6 1 nfn z¬φ
7 2 nfn w¬φ
8 3 nfn x¬ψ
9 4 nfn y¬ψ
10 5 notbid x=zy=w¬φ¬ψ
11 6 7 8 9 10 cbval2v xy¬φzw¬ψ
12 2nexaln ¬xyφxy¬φ
13 2nexaln ¬zwψzw¬ψ
14 11 12 13 3bitr4i ¬xyφ¬zwψ
15 14 con4bii xyφzwψ