Metamath Proof Explorer


Theorem cbval2v

Description: Rule used to change bound variables, using implicit substitution. Version of cbval2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 22-Dec-2003) (Revised by BJ, 16-Jun-2019) (Proof shortened by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbval2v.1 zφ
cbval2v.2 wφ
cbval2v.3 xψ
cbval2v.4 yψ
cbval2v.5 x=zy=wφψ
Assertion cbval2v xyφzwψ

Proof

Step Hyp Ref Expression
1 cbval2v.1 zφ
2 cbval2v.2 wφ
3 cbval2v.3 xψ
4 cbval2v.4 yψ
5 cbval2v.5 x=zy=wφψ
6 1 nfal zyφ
7 3 nfal xwψ
8 nfv yx=z
9 nfv wx=z
10 2 a1i x=zwφ
11 4 a1i x=zyψ
12 5 ex x=zy=wφψ
13 8 9 10 11 12 cbv2w x=zyφwψ
14 6 7 13 cbvalv1 xyφzwψ