Step |
Hyp |
Ref |
Expression |
1 |
|
dmmpossx2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐴 |
3 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ 𝐴 |
4 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐶 |
5 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐶 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑢 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
8 |
6 7
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
10 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑢 → 𝐴 = ⦋ 𝑢 / 𝑦 ⦌ 𝐴 ) |
11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
12 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑢 → ⦋ 𝑣 / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
13 |
11 12
|
sylan9eqr |
⊢ ( ( 𝑦 = 𝑢 ∧ 𝑥 = 𝑣 ) → 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
14 |
2 3 4 5 8 9 10 13
|
cbvmpox2 |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑣 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐴 , 𝑢 ∈ 𝐵 ↦ ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
15 |
|
vex |
⊢ 𝑣 ∈ V |
16 |
|
vex |
⊢ 𝑢 ∈ V |
17 |
15 16
|
op2ndd |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( 2nd ‘ 𝑡 ) = 𝑢 ) |
18 |
17
|
csbeq1d |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) |
19 |
15 16
|
op1std |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( 1st ‘ 𝑡 ) = 𝑣 ) |
20 |
19
|
csbeq1d |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
21 |
20
|
csbeq2dv |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ 𝑢 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
22 |
18 21
|
eqtrd |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
23 |
22
|
mpomptx2 |
⊢ ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ↦ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) = ( 𝑣 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐴 , 𝑢 ∈ 𝐵 ↦ ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
24 |
14 1 23
|
3eqtr4i |
⊢ 𝐹 = ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ↦ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) |
25 |
24
|
dmmptss |
⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑢 ( 𝐴 × { 𝑦 } ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑢 } |
28 |
3 27
|
nfxp |
⊢ Ⅎ 𝑦 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
29 |
|
sneq |
⊢ ( 𝑦 = 𝑢 → { 𝑦 } = { 𝑢 } ) |
30 |
10 29
|
xpeq12d |
⊢ ( 𝑦 = 𝑢 → ( 𝐴 × { 𝑦 } ) = ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ) |
31 |
26 28 30
|
cbviun |
⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) = ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
32 |
25 31
|
sseqtrri |
⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) |