Metamath Proof Explorer


Theorem dmmpossx2

Description: The domain of a mapping is a subset of its base classes expressed as union of Cartesian products over its second component, analogous to dmmpossx . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis dmmpossx2.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion dmmpossx2 dom 𝐹 𝑦𝐵 ( 𝐴 × { 𝑦 } )

Proof

Step Hyp Ref Expression
1 dmmpossx2.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 nfcv 𝑢 𝐴
3 nfcsb1v 𝑦 𝑢 / 𝑦 𝐴
4 nfcv 𝑢 𝐶
5 nfcv 𝑣 𝐶
6 nfcv 𝑥 𝑢
7 nfcsb1v 𝑥 𝑣 / 𝑥 𝐶
8 6 7 nfcsbw 𝑥 𝑢 / 𝑦 𝑣 / 𝑥 𝐶
9 nfcsb1v 𝑦 𝑢 / 𝑦 𝑣 / 𝑥 𝐶
10 csbeq1a ( 𝑦 = 𝑢𝐴 = 𝑢 / 𝑦 𝐴 )
11 csbeq1a ( 𝑥 = 𝑣𝐶 = 𝑣 / 𝑥 𝐶 )
12 csbeq1a ( 𝑦 = 𝑢 𝑣 / 𝑥 𝐶 = 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
13 11 12 sylan9eqr ( ( 𝑦 = 𝑢𝑥 = 𝑣 ) → 𝐶 = 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
14 2 3 4 5 8 9 10 13 cbvmpox2 ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑣 𝑢 / 𝑦 𝐴 , 𝑢𝐵 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
15 vex 𝑣 ∈ V
16 vex 𝑢 ∈ V
17 15 16 op2ndd ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → ( 2nd𝑡 ) = 𝑢 )
18 17 csbeq1d ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → ( 2nd𝑡 ) / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 = 𝑢 / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 )
19 15 16 op1std ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → ( 1st𝑡 ) = 𝑣 )
20 19 csbeq1d ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → ( 1st𝑡 ) / 𝑥 𝐶 = 𝑣 / 𝑥 𝐶 )
21 20 csbeq2dv ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → 𝑢 / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 = 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
22 18 21 eqtrd ( 𝑡 = ⟨ 𝑣 , 𝑢 ⟩ → ( 2nd𝑡 ) / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 = 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
23 22 mpomptx2 ( 𝑡 𝑢𝐵 ( 𝑢 / 𝑦 𝐴 × { 𝑢 } ) ↦ ( 2nd𝑡 ) / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 ) = ( 𝑣 𝑢 / 𝑦 𝐴 , 𝑢𝐵 𝑢 / 𝑦 𝑣 / 𝑥 𝐶 )
24 14 1 23 3eqtr4i 𝐹 = ( 𝑡 𝑢𝐵 ( 𝑢 / 𝑦 𝐴 × { 𝑢 } ) ↦ ( 2nd𝑡 ) / 𝑦 ( 1st𝑡 ) / 𝑥 𝐶 )
25 24 dmmptss dom 𝐹 𝑢𝐵 ( 𝑢 / 𝑦 𝐴 × { 𝑢 } )
26 nfcv 𝑢 ( 𝐴 × { 𝑦 } )
27 nfcv 𝑦 { 𝑢 }
28 3 27 nfxp 𝑦 ( 𝑢 / 𝑦 𝐴 × { 𝑢 } )
29 sneq ( 𝑦 = 𝑢 → { 𝑦 } = { 𝑢 } )
30 10 29 xpeq12d ( 𝑦 = 𝑢 → ( 𝐴 × { 𝑦 } ) = ( 𝑢 / 𝑦 𝐴 × { 𝑢 } ) )
31 26 28 30 cbviun 𝑦𝐵 ( 𝐴 × { 𝑦 } ) = 𝑢𝐵 ( 𝑢 / 𝑦 𝐴 × { 𝑢 } )
32 25 31 sseqtrri dom 𝐹 𝑦𝐵 ( 𝐴 × { 𝑦 } )