| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmmpossx2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐴 |
| 3 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ 𝐴 |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐶 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐶 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑢 |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
| 8 |
6 7
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
| 9 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 |
| 10 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑢 → 𝐴 = ⦋ 𝑢 / 𝑦 ⦌ 𝐴 ) |
| 11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 12 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑢 → ⦋ 𝑣 / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 13 |
11 12
|
sylan9eqr |
⊢ ( ( 𝑦 = 𝑢 ∧ 𝑥 = 𝑣 ) → 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 14 |
2 3 4 5 8 9 10 13
|
cbvmpox2 |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑣 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐴 , 𝑢 ∈ 𝐵 ↦ ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 15 |
|
vex |
⊢ 𝑣 ∈ V |
| 16 |
|
vex |
⊢ 𝑢 ∈ V |
| 17 |
15 16
|
op2ndd |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( 2nd ‘ 𝑡 ) = 𝑢 ) |
| 18 |
17
|
csbeq1d |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) |
| 19 |
15 16
|
op1std |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ( 1st ‘ 𝑡 ) = 𝑣 ) |
| 20 |
19
|
csbeq1d |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 21 |
20
|
csbeq2dv |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ 𝑢 / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 22 |
18 21
|
eqtrd |
⊢ ( 𝑡 = 〈 𝑣 , 𝑢 〉 → ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 = ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 23 |
22
|
mpomptx2 |
⊢ ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ↦ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) = ( 𝑣 ∈ ⦋ 𝑢 / 𝑦 ⦌ 𝐴 , 𝑢 ∈ 𝐵 ↦ ⦋ 𝑢 / 𝑦 ⦌ ⦋ 𝑣 / 𝑥 ⦌ 𝐶 ) |
| 24 |
14 1 23
|
3eqtr4i |
⊢ 𝐹 = ( 𝑡 ∈ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ↦ ⦋ ( 2nd ‘ 𝑡 ) / 𝑦 ⦌ ⦋ ( 1st ‘ 𝑡 ) / 𝑥 ⦌ 𝐶 ) |
| 25 |
24
|
dmmptss |
⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑢 ( 𝐴 × { 𝑦 } ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑢 } |
| 28 |
3 27
|
nfxp |
⊢ Ⅎ 𝑦 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
| 29 |
|
sneq |
⊢ ( 𝑦 = 𝑢 → { 𝑦 } = { 𝑢 } ) |
| 30 |
10 29
|
xpeq12d |
⊢ ( 𝑦 = 𝑢 → ( 𝐴 × { 𝑦 } ) = ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) ) |
| 31 |
26 28 30
|
cbviun |
⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) = ∪ 𝑢 ∈ 𝐵 ( ⦋ 𝑢 / 𝑦 ⦌ 𝐴 × { 𝑢 } ) |
| 32 |
25 31
|
sseqtrri |
⊢ dom 𝐹 ⊆ ∪ 𝑦 ∈ 𝐵 ( 𝐴 × { 𝑦 } ) |