Metamath Proof Explorer


Theorem nfcsbw

Description: Bound-variable hypothesis builder for substitution into a class. Version of nfcsb with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 12-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfcsbw.1 𝑥 𝐴
nfcsbw.2 𝑥 𝐵
Assertion nfcsbw 𝑥 𝐴 / 𝑦 𝐵

Proof

Step Hyp Ref Expression
1 nfcsbw.1 𝑥 𝐴
2 nfcsbw.2 𝑥 𝐵
3 df-csb 𝐴 / 𝑦 𝐵 = { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐵 }
4 nftru 𝑧
5 nftru 𝑦
6 1 a1i ( ⊤ → 𝑥 𝐴 )
7 2 a1i ( ⊤ → 𝑥 𝐵 )
8 7 nfcrd ( ⊤ → Ⅎ 𝑥 𝑧𝐵 )
9 5 6 8 nfsbcdw ( ⊤ → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝑧𝐵 )
10 4 9 nfabdw ( ⊤ → 𝑥 { 𝑧[ 𝐴 / 𝑦 ] 𝑧𝐵 } )
11 3 10 nfcxfrd ( ⊤ → 𝑥 𝐴 / 𝑦 𝐵 )
12 11 mptru 𝑥 𝐴 / 𝑦 𝐵