Metamath Proof Explorer


Theorem nfsbcdw

Description: Deduction version of nfsbcw . Version of nfsbcd with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfsbcdw.1 𝑦 𝜑
nfsbcdw.2 ( 𝜑 𝑥 𝐴 )
nfsbcdw.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfsbcdw ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 nfsbcdw.1 𝑦 𝜑
2 nfsbcdw.2 ( 𝜑 𝑥 𝐴 )
3 nfsbcdw.3 ( 𝜑 → Ⅎ 𝑥 𝜓 )
4 df-sbc ( [ 𝐴 / 𝑦 ] 𝜓𝐴 ∈ { 𝑦𝜓 } )
5 1 3 nfabdw ( 𝜑 𝑥 { 𝑦𝜓 } )
6 2 5 nfeld ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ { 𝑦𝜓 } )
7 4 6 nfxfrd ( 𝜑 → Ⅎ 𝑥 [ 𝐴 / 𝑦 ] 𝜓 )