Metamath Proof Explorer


Theorem mpoexxg2

Description: Existence of an operation class abstraction (version for dependent domains, i.e. the first base class may depend on the second base class), analogous to mpoexxg . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis mpoexxg2.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion mpoexxg2 ( ( 𝐵𝑅 ∧ ∀ 𝑦𝐵 𝐴𝑆 ) → 𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 mpoexxg2.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 mpofun Fun 𝐹
3 1 dmmpossx2 dom 𝐹 𝑦𝐵 ( 𝐴 × { 𝑦 } )
4 snex { 𝑦 } ∈ V
5 xpexg ( ( 𝐴𝑆 ∧ { 𝑦 } ∈ V ) → ( 𝐴 × { 𝑦 } ) ∈ V )
6 4 5 mpan2 ( 𝐴𝑆 → ( 𝐴 × { 𝑦 } ) ∈ V )
7 6 ralimi ( ∀ 𝑦𝐵 𝐴𝑆 → ∀ 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
8 iunexg ( ( 𝐵𝑅 ∧ ∀ 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) → 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
9 7 8 sylan2 ( ( 𝐵𝑅 ∧ ∀ 𝑦𝐵 𝐴𝑆 ) → 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V )
10 ssexg ( ( dom 𝐹 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∧ 𝑦𝐵 ( 𝐴 × { 𝑦 } ) ∈ V ) → dom 𝐹 ∈ V )
11 3 9 10 sylancr ( ( 𝐵𝑅 ∧ ∀ 𝑦𝐵 𝐴𝑆 ) → dom 𝐹 ∈ V )
12 funex ( ( Fun 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V )
13 2 11 12 sylancr ( ( 𝐵𝑅 ∧ ∀ 𝑦𝐵 𝐴𝑆 ) → 𝐹 ∈ V )