Metamath Proof Explorer


Theorem mpomptx2

Description: Express a two-argument function as a one-argument function, or vice-versa. In this version A ( y ) is not assumed to be constant w.r.t y , analogous to mpomptx . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypothesis mpomptx2.1 z = x y C = D
Assertion mpomptx2 z y B A × y C = x A , y B D

Proof

Step Hyp Ref Expression
1 mpomptx2.1 z = x y C = D
2 df-mpt z y B A × y C = z w | z y B A × y w = C
3 df-mpo x A , y B D = x y w | x A y B w = D
4 eliunxp2 z y B A × y x y z = x y x A y B
5 4 anbi1i z y B A × y w = C x y z = x y x A y B w = C
6 19.41vv x y z = x y x A y B w = C x y z = x y x A y B w = C
7 anass z = x y x A y B w = C z = x y x A y B w = C
8 1 eqeq2d z = x y w = C w = D
9 8 anbi2d z = x y x A y B w = C x A y B w = D
10 9 pm5.32i z = x y x A y B w = C z = x y x A y B w = D
11 7 10 bitri z = x y x A y B w = C z = x y x A y B w = D
12 11 2exbii x y z = x y x A y B w = C x y z = x y x A y B w = D
13 5 6 12 3bitr2i z y B A × y w = C x y z = x y x A y B w = D
14 13 opabbii z w | z y B A × y w = C = z w | x y z = x y x A y B w = D
15 dfoprab2 x y w | x A y B w = D = z w | x y z = x y x A y B w = D
16 14 15 eqtr4i z w | z y B A × y w = C = x y w | x A y B w = D
17 3 16 eqtr4i x A , y B D = z w | z y B A × y w = C
18 2 17 eqtr4i z y B A × y C = x A , y B D