Metamath Proof Explorer


Theorem eliunxp2

Description: Membership in a union of Cartesian products over its second component, analogous to eliunxp . (Contributed by AV, 30-Mar-2019)

Ref Expression
Assertion eliunxp2 CyBA×yxyC=xyxAyB

Proof

Step Hyp Ref Expression
1 relxp RelA×y
2 1 rgenw yBRelA×y
3 reliun RelyBA×yyBRelA×y
4 2 3 mpbir RelyBA×y
5 elrel RelyBA×yCyBA×yxyC=xy
6 4 5 mpan CyBA×yxyC=xy
7 excom yxC=xyxyC=xy
8 6 7 sylibr CyBA×yyxC=xy
9 8 pm4.71ri CyBA×yyxC=xyCyBA×y
10 nfiu1 _yyBA×y
11 10 nfel2 yCyBA×y
12 11 19.41 yxC=xyCyBA×yyxC=xyCyBA×y
13 19.41v xC=xyCyBA×yxC=xyCyBA×y
14 eleq1 C=xyCyBA×yxyyBA×y
15 opeliun2xp xyyBA×yyBxA
16 15 biancomi xyyBA×yxAyB
17 14 16 bitrdi C=xyCyBA×yxAyB
18 17 pm5.32i C=xyCyBA×yC=xyxAyB
19 18 exbii xC=xyCyBA×yxC=xyxAyB
20 13 19 bitr3i xC=xyCyBA×yxC=xyxAyB
21 20 exbii yxC=xyCyBA×yyxC=xyxAyB
22 9 12 21 3bitr2i CyBA×yyxC=xyxAyB
23 excom yxC=xyxAyBxyC=xyxAyB
24 22 23 bitri CyBA×yxyC=xyxAyB