Metamath Proof Explorer


Theorem cbviun

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) Add disjoint variable condition to avoid ax-13 . See cbviung for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses cbviun.1 _yB
cbviun.2 _xC
cbviun.3 x=yB=C
Assertion cbviun xAB=yAC

Proof

Step Hyp Ref Expression
1 cbviun.1 _yB
2 cbviun.2 _xC
3 cbviun.3 x=yB=C
4 1 nfcri yzB
5 2 nfcri xzC
6 3 eleq2d x=yzBzC
7 4 5 6 cbvrexw xAzByAzC
8 7 abbii z|xAzB=z|yAzC
9 df-iun xAB=z|xAzB
10 df-iun yAC=z|yAzC
11 8 9 10 3eqtr4i xAB=yAC