Metamath Proof Explorer


Theorem ovmpox2

Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses ovmpox2.1
|- ( ( x = A /\ y = B ) -> R = S )
ovmpox2.2
|- ( y = B -> C = L )
ovmpox2.3
|- F = ( x e. C , y e. D |-> R )
Assertion ovmpox2
|- ( ( A e. L /\ B e. D /\ S e. H ) -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpox2.1
 |-  ( ( x = A /\ y = B ) -> R = S )
2 ovmpox2.2
 |-  ( y = B -> C = L )
3 ovmpox2.3
 |-  F = ( x e. C , y e. D |-> R )
4 3 a1i
 |-  ( ( A e. L /\ B e. D /\ S e. H ) -> F = ( x e. C , y e. D |-> R ) )
5 1 adantl
 |-  ( ( ( A e. L /\ B e. D /\ S e. H ) /\ ( x = A /\ y = B ) ) -> R = S )
6 2 adantl
 |-  ( ( ( A e. L /\ B e. D /\ S e. H ) /\ y = B ) -> C = L )
7 simp1
 |-  ( ( A e. L /\ B e. D /\ S e. H ) -> A e. L )
8 simp2
 |-  ( ( A e. L /\ B e. D /\ S e. H ) -> B e. D )
9 simp3
 |-  ( ( A e. L /\ B e. D /\ S e. H ) -> S e. H )
10 4 5 6 7 8 9 ovmpordx
 |-  ( ( A e. L /\ B e. D /\ S e. H ) -> ( A F B ) = S )