Metamath Proof Explorer


Theorem fdmdifeqresdif

Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019)

Ref Expression
Hypothesis fdmdifeqresdif.f
|- F = ( x e. D |-> if ( x = Y , X , ( G ` x ) ) )
Assertion fdmdifeqresdif
|- ( G : ( D \ { Y } ) --> R -> G = ( F |` ( D \ { Y } ) ) )

Proof

Step Hyp Ref Expression
1 fdmdifeqresdif.f
 |-  F = ( x e. D |-> if ( x = Y , X , ( G ` x ) ) )
2 eldifsnneq
 |-  ( x e. ( D \ { Y } ) -> -. x = Y )
3 2 adantl
 |-  ( ( G : ( D \ { Y } ) --> R /\ x e. ( D \ { Y } ) ) -> -. x = Y )
4 3 iffalsed
 |-  ( ( G : ( D \ { Y } ) --> R /\ x e. ( D \ { Y } ) ) -> if ( x = Y , X , ( G ` x ) ) = ( G ` x ) )
5 4 mpteq2dva
 |-  ( G : ( D \ { Y } ) --> R -> ( x e. ( D \ { Y } ) |-> if ( x = Y , X , ( G ` x ) ) ) = ( x e. ( D \ { Y } ) |-> ( G ` x ) ) )
6 1 reseq1i
 |-  ( F |` ( D \ { Y } ) ) = ( ( x e. D |-> if ( x = Y , X , ( G ` x ) ) ) |` ( D \ { Y } ) )
7 difssd
 |-  ( G : ( D \ { Y } ) --> R -> ( D \ { Y } ) C_ D )
8 7 resmptd
 |-  ( G : ( D \ { Y } ) --> R -> ( ( x e. D |-> if ( x = Y , X , ( G ` x ) ) ) |` ( D \ { Y } ) ) = ( x e. ( D \ { Y } ) |-> if ( x = Y , X , ( G ` x ) ) ) )
9 6 8 eqtrid
 |-  ( G : ( D \ { Y } ) --> R -> ( F |` ( D \ { Y } ) ) = ( x e. ( D \ { Y } ) |-> if ( x = Y , X , ( G ` x ) ) ) )
10 ffn
 |-  ( G : ( D \ { Y } ) --> R -> G Fn ( D \ { Y } ) )
11 dffn5
 |-  ( G Fn ( D \ { Y } ) <-> G = ( x e. ( D \ { Y } ) |-> ( G ` x ) ) )
12 10 11 sylib
 |-  ( G : ( D \ { Y } ) --> R -> G = ( x e. ( D \ { Y } ) |-> ( G ` x ) ) )
13 5 9 12 3eqtr4rd
 |-  ( G : ( D \ { Y } ) --> R -> G = ( F |` ( D \ { Y } ) ) )