Metamath Proof Explorer


Theorem fdmdifeqresdif

Description: The restriction of a conditional mapping to function values of a function having a domain which is a difference with a singleton equals this function. (Contributed by AV, 23-Apr-2019)

Ref Expression
Hypothesis fdmdifeqresdif.f 𝐹 = ( 𝑥𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) )
Assertion fdmdifeqresdif ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝐺 = ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) )

Proof

Step Hyp Ref Expression
1 fdmdifeqresdif.f 𝐹 = ( 𝑥𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) )
2 eldifsnneq ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) → ¬ 𝑥 = 𝑌 )
3 2 adantl ( ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ) → ¬ 𝑥 = 𝑌 )
4 3 iffalsed ( ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ) → if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) = ( 𝐺𝑥 ) )
5 4 mpteq2dva ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺𝑥 ) ) )
6 1 reseq1i ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( ( 𝑥𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) ) ↾ ( 𝐷 ∖ { 𝑌 } ) )
7 difssd ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝐷 ∖ { 𝑌 } ) ⊆ 𝐷 )
8 7 resmptd ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( ( 𝑥𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) ) ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) ) )
9 6 8 eqtrid ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺𝑥 ) ) ) )
10 ffn ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝐺 Fn ( 𝐷 ∖ { 𝑌 } ) )
11 dffn5 ( 𝐺 Fn ( 𝐷 ∖ { 𝑌 } ) ↔ 𝐺 = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺𝑥 ) ) )
12 10 11 sylib ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝐺 = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺𝑥 ) ) )
13 5 9 12 3eqtr4rd ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅𝐺 = ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) )