Step |
Hyp |
Ref |
Expression |
1 |
|
fdmdifeqresdif.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) |
2 |
|
eldifsnneq |
⊢ ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) → ¬ 𝑥 = 𝑌 ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 ∧ 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ) → ¬ 𝑥 = 𝑌 ) |
4 |
3
|
iffalsed |
⊢ ( ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 ∧ 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ) → if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
5 |
4
|
mpteq2dva |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
6 |
1
|
reseq1i |
⊢ ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) ↾ ( 𝐷 ∖ { 𝑌 } ) ) |
7 |
|
difssd |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝐷 ∖ { 𝑌 } ) ⊆ 𝐷 ) |
8 |
7
|
resmptd |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) ) |
9 |
6 8
|
syl5eq |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ if ( 𝑥 = 𝑌 , 𝑋 , ( 𝐺 ‘ 𝑥 ) ) ) ) |
10 |
|
ffn |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → 𝐺 Fn ( 𝐷 ∖ { 𝑌 } ) ) |
11 |
|
dffn5 |
⊢ ( 𝐺 Fn ( 𝐷 ∖ { 𝑌 } ) ↔ 𝐺 = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → 𝐺 = ( 𝑥 ∈ ( 𝐷 ∖ { 𝑌 } ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
13 |
5 9 12
|
3eqtr4rd |
⊢ ( 𝐺 : ( 𝐷 ∖ { 𝑌 } ) ⟶ 𝑅 → 𝐺 = ( 𝐹 ↾ ( 𝐷 ∖ { 𝑌 } ) ) ) |