Metamath Proof Explorer


Theorem ovmpordx

Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypotheses ovmpordx.1
|- ( ph -> F = ( x e. C , y e. D |-> R ) )
ovmpordx.2
|- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
ovmpordx.3
|- ( ( ph /\ y = B ) -> C = L )
ovmpordx.4
|- ( ph -> A e. L )
ovmpordx.5
|- ( ph -> B e. D )
ovmpordx.6
|- ( ph -> S e. X )
Assertion ovmpordx
|- ( ph -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpordx.1
 |-  ( ph -> F = ( x e. C , y e. D |-> R ) )
2 ovmpordx.2
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
3 ovmpordx.3
 |-  ( ( ph /\ y = B ) -> C = L )
4 ovmpordx.4
 |-  ( ph -> A e. L )
5 ovmpordx.5
 |-  ( ph -> B e. D )
6 ovmpordx.6
 |-  ( ph -> S e. X )
7 nfv
 |-  F/ x ph
8 nfv
 |-  F/ y ph
9 nfcv
 |-  F/_ y A
10 nfcv
 |-  F/_ x B
11 nfcv
 |-  F/_ x S
12 nfcv
 |-  F/_ y S
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpordxf
 |-  ( ph -> ( A F B ) = S )