Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf . (Contributed by AV, 30-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovmpordx.1 | |- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
|
ovmpordx.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
||
ovmpordx.3 | |- ( ( ph /\ y = B ) -> C = L ) |
||
ovmpordx.4 | |- ( ph -> A e. L ) |
||
ovmpordx.5 | |- ( ph -> B e. D ) |
||
ovmpordx.6 | |- ( ph -> S e. X ) |
||
Assertion | ovmpordx | |- ( ph -> ( A F B ) = S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpordx.1 | |- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
|
2 | ovmpordx.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
|
3 | ovmpordx.3 | |- ( ( ph /\ y = B ) -> C = L ) |
|
4 | ovmpordx.4 | |- ( ph -> A e. L ) |
|
5 | ovmpordx.5 | |- ( ph -> B e. D ) |
|
6 | ovmpordx.6 | |- ( ph -> S e. X ) |
|
7 | nfv | |- F/ x ph |
|
8 | nfv | |- F/ y ph |
|
9 | nfcv | |- F/_ y A |
|
10 | nfcv | |- F/_ x B |
|
11 | nfcv | |- F/_ x S |
|
12 | nfcv | |- F/_ y S |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 12 | ovmpordxf | |- ( ph -> ( A F B ) = S ) |