Metamath Proof Explorer


Theorem ovmpordx

Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf . (Contributed by AV, 30-Mar-2019)

Ref Expression
Hypotheses ovmpordx.1 φF=xC,yDR
ovmpordx.2 φx=Ay=BR=S
ovmpordx.3 φy=BC=L
ovmpordx.4 φAL
ovmpordx.5 φBD
ovmpordx.6 φSX
Assertion ovmpordx φAFB=S

Proof

Step Hyp Ref Expression
1 ovmpordx.1 φF=xC,yDR
2 ovmpordx.2 φx=Ay=BR=S
3 ovmpordx.3 φy=BC=L
4 ovmpordx.4 φAL
5 ovmpordx.5 φBD
6 ovmpordx.6 φSX
7 nfv xφ
8 nfv yφ
9 nfcv _yA
10 nfcv _xB
11 nfcv _xS
12 nfcv _yS
13 1 2 3 4 5 6 7 8 9 10 11 12 ovmpordxf φAFB=S