Metamath Proof Explorer


Theorem mapprop

Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019) (Proof shortened by AV, 2-Jun-2024)

Ref Expression
Hypothesis mapprop.f 𝐹 = { ⟨ 𝑋 , 𝐴 ⟩ , ⟨ 𝑌 , 𝐵 ⟩ }
Assertion mapprop ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → 𝐹 ∈ ( 𝑅m { 𝑋 , 𝑌 } ) )

Proof

Step Hyp Ref Expression
1 mapprop.f 𝐹 = { ⟨ 𝑋 , 𝐴 ⟩ , ⟨ 𝑌 , 𝐵 ⟩ }
2 simp3r ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → 𝑅𝑊 )
3 simpl ( ( 𝑋𝑉𝐴𝑅 ) → 𝑋𝑉 )
4 simpl ( ( 𝑌𝑉𝐵𝑅 ) → 𝑌𝑉 )
5 simpl ( ( 𝑋𝑌𝑅𝑊 ) → 𝑋𝑌 )
6 3 4 5 3anim123i ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) )
7 simpr ( ( 𝑋𝑉𝐴𝑅 ) → 𝐴𝑅 )
8 simpr ( ( 𝑌𝑉𝐵𝑅 ) → 𝐵𝑅 )
9 7 8 anim12i ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ) → ( 𝐴𝑅𝐵𝑅 ) )
10 9 3adant3 ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → ( 𝐴𝑅𝐵𝑅 ) )
11 fprmappr ( ( 𝑅𝑊 ∧ ( 𝑋𝑉𝑌𝑉𝑋𝑌 ) ∧ ( 𝐴𝑅𝐵𝑅 ) ) → { ⟨ 𝑋 , 𝐴 ⟩ , ⟨ 𝑌 , 𝐵 ⟩ } ∈ ( 𝑅m { 𝑋 , 𝑌 } ) )
12 2 6 10 11 syl3anc ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → { ⟨ 𝑋 , 𝐴 ⟩ , ⟨ 𝑌 , 𝐵 ⟩ } ∈ ( 𝑅m { 𝑋 , 𝑌 } ) )
13 1 12 eqeltrid ( ( ( 𝑋𝑉𝐴𝑅 ) ∧ ( 𝑌𝑉𝐵𝑅 ) ∧ ( 𝑋𝑌𝑅𝑊 ) ) → 𝐹 ∈ ( 𝑅m { 𝑋 , 𝑌 } ) )