Metamath Proof Explorer


Theorem fprmappr

Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024)

Ref Expression
Assertion fprmappr ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ∈ ( 𝑋m { 𝐴 , 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 3simpa ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) → ( 𝐴𝑈𝐵𝑊 ) )
2 1 adantr ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → ( 𝐴𝑈𝐵𝑊 ) )
3 simpr ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → ( 𝐶𝑋𝐷𝑋 ) )
4 simpl3 ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → 𝐴𝐵 )
5 fprg ( ( ( 𝐴𝑈𝐵𝑊 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } : { 𝐴 , 𝐵 } ⟶ { 𝐶 , 𝐷 } )
6 2 3 4 5 syl3anc ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } : { 𝐴 , 𝐵 } ⟶ { 𝐶 , 𝐷 } )
7 prssi ( ( 𝐶𝑋𝐷𝑋 ) → { 𝐶 , 𝐷 } ⊆ 𝑋 )
8 7 adantl ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { 𝐶 , 𝐷 } ⊆ 𝑋 )
9 6 8 fssd ( ( ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } : { 𝐴 , 𝐵 } ⟶ 𝑋 )
10 9 3adant1 ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } : { 𝐴 , 𝐵 } ⟶ 𝑋 )
11 simp1 ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → 𝑋𝑉 )
12 prex { 𝐴 , 𝐵 } ∈ V
13 12 a1i ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { 𝐴 , 𝐵 } ∈ V )
14 11 13 elmapd ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → ( { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ∈ ( 𝑋m { 𝐴 , 𝐵 } ) ↔ { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } : { 𝐴 , 𝐵 } ⟶ 𝑋 ) )
15 10 14 mpbird ( ( 𝑋𝑉 ∧ ( 𝐴𝑈𝐵𝑊𝐴𝐵 ) ∧ ( 𝐶𝑋𝐷𝑋 ) ) → { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } ∈ ( 𝑋m { 𝐴 , 𝐵 } ) )