Metamath Proof Explorer


Theorem mapprop

Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019) (Proof shortened by AV, 2-Jun-2024)

Ref Expression
Hypothesis mapprop.f
|- F = { <. X , A >. , <. Y , B >. }
Assertion mapprop
|- ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> F e. ( R ^m { X , Y } ) )

Proof

Step Hyp Ref Expression
1 mapprop.f
 |-  F = { <. X , A >. , <. Y , B >. }
2 simp3r
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> R e. W )
3 simpl
 |-  ( ( X e. V /\ A e. R ) -> X e. V )
4 simpl
 |-  ( ( Y e. V /\ B e. R ) -> Y e. V )
5 simpl
 |-  ( ( X =/= Y /\ R e. W ) -> X =/= Y )
6 3 4 5 3anim123i
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> ( X e. V /\ Y e. V /\ X =/= Y ) )
7 simpr
 |-  ( ( X e. V /\ A e. R ) -> A e. R )
8 simpr
 |-  ( ( Y e. V /\ B e. R ) -> B e. R )
9 7 8 anim12i
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) ) -> ( A e. R /\ B e. R ) )
10 9 3adant3
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> ( A e. R /\ B e. R ) )
11 fprmappr
 |-  ( ( R e. W /\ ( X e. V /\ Y e. V /\ X =/= Y ) /\ ( A e. R /\ B e. R ) ) -> { <. X , A >. , <. Y , B >. } e. ( R ^m { X , Y } ) )
12 2 6 10 11 syl3anc
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> { <. X , A >. , <. Y , B >. } e. ( R ^m { X , Y } ) )
13 1 12 eqeltrid
 |-  ( ( ( X e. V /\ A e. R ) /\ ( Y e. V /\ B e. R ) /\ ( X =/= Y /\ R e. W ) ) -> F e. ( R ^m { X , Y } ) )