Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
|- ( Z e. ZZ <-> ( Z e. NN0 \/ ( Z e. RR /\ -u Z e. NN ) ) ) |
2 |
|
elnn0 |
|- ( Z e. NN0 <-> ( Z e. NN \/ Z = 0 ) ) |
3 |
|
elnn1uz2 |
|- ( Z e. NN <-> ( Z = 1 \/ Z e. ( ZZ>= ` 2 ) ) ) |
4 |
|
oveq1 |
|- ( Z = 1 -> ( Z x. A ) = ( 1 x. A ) ) |
5 |
4
|
adantr |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( Z x. A ) = ( 1 x. A ) ) |
6 |
5
|
eqeq1d |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B <-> ( 1 x. A ) = B ) ) |
7 |
|
prmz |
|- ( A e. Prime -> A e. ZZ ) |
8 |
7
|
zcnd |
|- ( A e. Prime -> A e. CC ) |
9 |
8
|
mulid2d |
|- ( A e. Prime -> ( 1 x. A ) = A ) |
10 |
9
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 1 x. A ) = A ) |
11 |
10
|
eqeq1d |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 1 x. A ) = B <-> A = B ) ) |
12 |
11
|
biimpd |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 1 x. A ) = B -> A = B ) ) |
13 |
12
|
adantl |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( 1 x. A ) = B -> A = B ) ) |
14 |
6 13
|
sylbid |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) |
15 |
14
|
ex |
|- ( Z = 1 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
16 |
|
prmuz2 |
|- ( A e. Prime -> A e. ( ZZ>= ` 2 ) ) |
17 |
16
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> A e. ( ZZ>= ` 2 ) ) |
18 |
|
nprm |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( Z x. A ) e. Prime ) |
19 |
17 18
|
sylan2 |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> -. ( Z x. A ) e. Prime ) |
20 |
|
eleq1 |
|- ( ( Z x. A ) = B -> ( ( Z x. A ) e. Prime <-> B e. Prime ) ) |
21 |
20
|
notbid |
|- ( ( Z x. A ) = B -> ( -. ( Z x. A ) e. Prime <-> -. B e. Prime ) ) |
22 |
|
pm2.24 |
|- ( B e. Prime -> ( -. B e. Prime -> A = B ) ) |
23 |
22
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( -. B e. Prime -> A = B ) ) |
24 |
23
|
adantl |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( -. B e. Prime -> A = B ) ) |
25 |
24
|
com12 |
|- ( -. B e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> A = B ) ) |
26 |
21 25
|
syl6bi |
|- ( ( Z x. A ) = B -> ( -. ( Z x. A ) e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> A = B ) ) ) |
27 |
26
|
com3l |
|- ( -. ( Z x. A ) e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
28 |
19 27
|
mpcom |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) |
29 |
28
|
ex |
|- ( Z e. ( ZZ>= ` 2 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
30 |
15 29
|
jaoi |
|- ( ( Z = 1 \/ Z e. ( ZZ>= ` 2 ) ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
31 |
3 30
|
sylbi |
|- ( Z e. NN -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
32 |
|
oveq1 |
|- ( Z = 0 -> ( Z x. A ) = ( 0 x. A ) ) |
33 |
32
|
eqeq1d |
|- ( Z = 0 -> ( ( Z x. A ) = B <-> ( 0 x. A ) = B ) ) |
34 |
|
prmnn |
|- ( A e. Prime -> A e. NN ) |
35 |
34
|
nnred |
|- ( A e. Prime -> A e. RR ) |
36 |
|
mul02lem2 |
|- ( A e. RR -> ( 0 x. A ) = 0 ) |
37 |
35 36
|
syl |
|- ( A e. Prime -> ( 0 x. A ) = 0 ) |
38 |
37
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 0 x. A ) = 0 ) |
39 |
38
|
eqeq1d |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 0 x. A ) = B <-> 0 = B ) ) |
40 |
|
prmnn |
|- ( B e. Prime -> B e. NN ) |
41 |
|
elnnne0 |
|- ( B e. NN <-> ( B e. NN0 /\ B =/= 0 ) ) |
42 |
|
eqneqall |
|- ( B = 0 -> ( B =/= 0 -> A = B ) ) |
43 |
42
|
eqcoms |
|- ( 0 = B -> ( B =/= 0 -> A = B ) ) |
44 |
43
|
com12 |
|- ( B =/= 0 -> ( 0 = B -> A = B ) ) |
45 |
44
|
adantl |
|- ( ( B e. NN0 /\ B =/= 0 ) -> ( 0 = B -> A = B ) ) |
46 |
41 45
|
sylbi |
|- ( B e. NN -> ( 0 = B -> A = B ) ) |
47 |
40 46
|
syl |
|- ( B e. Prime -> ( 0 = B -> A = B ) ) |
48 |
47
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 0 = B -> A = B ) ) |
49 |
39 48
|
sylbid |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 0 x. A ) = B -> A = B ) ) |
50 |
49
|
com12 |
|- ( ( 0 x. A ) = B -> ( ( A e. Prime /\ B e. Prime ) -> A = B ) ) |
51 |
33 50
|
syl6bi |
|- ( Z = 0 -> ( ( Z x. A ) = B -> ( ( A e. Prime /\ B e. Prime ) -> A = B ) ) ) |
52 |
51
|
com23 |
|- ( Z = 0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
53 |
31 52
|
jaoi |
|- ( ( Z e. NN \/ Z = 0 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
54 |
2 53
|
sylbi |
|- ( Z e. NN0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
55 |
|
elnnz |
|- ( -u Z e. NN <-> ( -u Z e. ZZ /\ 0 < -u Z ) ) |
56 |
|
lt0neg1 |
|- ( Z e. RR -> ( Z < 0 <-> 0 < -u Z ) ) |
57 |
34
|
nngt0d |
|- ( A e. Prime -> 0 < A ) |
58 |
57
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> 0 < A ) |
59 |
|
simpr |
|- ( ( Z e. RR /\ Z < 0 ) -> Z < 0 ) |
60 |
58 59
|
anim12ci |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( Z < 0 /\ 0 < A ) ) |
61 |
60
|
orcd |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( ( Z < 0 /\ 0 < A ) \/ ( 0 < Z /\ A < 0 ) ) ) |
62 |
|
simprl |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> Z e. RR ) |
63 |
35
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> A e. RR ) |
64 |
63
|
adantr |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> A e. RR ) |
65 |
62 64
|
mul2lt0bi |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( ( Z x. A ) < 0 <-> ( ( Z < 0 /\ 0 < A ) \/ ( 0 < Z /\ A < 0 ) ) ) ) |
66 |
61 65
|
mpbird |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( Z x. A ) < 0 ) |
67 |
66
|
ex |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z e. RR /\ Z < 0 ) -> ( Z x. A ) < 0 ) ) |
68 |
|
breq1 |
|- ( ( Z x. A ) = B -> ( ( Z x. A ) < 0 <-> B < 0 ) ) |
69 |
68
|
adantl |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( ( Z x. A ) < 0 <-> B < 0 ) ) |
70 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
71 |
|
nn0nlt0 |
|- ( B e. NN0 -> -. B < 0 ) |
72 |
71
|
pm2.21d |
|- ( B e. NN0 -> ( B < 0 -> A = B ) ) |
73 |
70 72
|
syl |
|- ( B e. NN -> ( B < 0 -> A = B ) ) |
74 |
40 73
|
syl |
|- ( B e. Prime -> ( B < 0 -> A = B ) ) |
75 |
74
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( B < 0 -> A = B ) ) |
76 |
75
|
adantr |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( B < 0 -> A = B ) ) |
77 |
69 76
|
sylbid |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( ( Z x. A ) < 0 -> A = B ) ) |
78 |
77
|
ex |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> ( ( Z x. A ) < 0 -> A = B ) ) ) |
79 |
78
|
com23 |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) < 0 -> ( ( Z x. A ) = B -> A = B ) ) ) |
80 |
67 79
|
syldc |
|- ( ( Z e. RR /\ Z < 0 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
81 |
80
|
ex |
|- ( Z e. RR -> ( Z < 0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
82 |
56 81
|
sylbird |
|- ( Z e. RR -> ( 0 < -u Z -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
83 |
82
|
adantld |
|- ( Z e. RR -> ( ( -u Z e. ZZ /\ 0 < -u Z ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
84 |
55 83
|
syl5bi |
|- ( Z e. RR -> ( -u Z e. NN -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
85 |
84
|
imp |
|- ( ( Z e. RR /\ -u Z e. NN ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
86 |
54 85
|
jaoi |
|- ( ( Z e. NN0 \/ ( Z e. RR /\ -u Z e. NN ) ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
87 |
1 86
|
sylbi |
|- ( Z e. ZZ -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
88 |
87
|
3impib |
|- ( ( Z e. ZZ /\ A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) |