| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|- ( Z e. ZZ <-> ( Z e. NN0 \/ ( Z e. RR /\ -u Z e. NN ) ) ) |
| 2 |
|
elnn0 |
|- ( Z e. NN0 <-> ( Z e. NN \/ Z = 0 ) ) |
| 3 |
|
elnn1uz2 |
|- ( Z e. NN <-> ( Z = 1 \/ Z e. ( ZZ>= ` 2 ) ) ) |
| 4 |
|
oveq1 |
|- ( Z = 1 -> ( Z x. A ) = ( 1 x. A ) ) |
| 5 |
4
|
adantr |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( Z x. A ) = ( 1 x. A ) ) |
| 6 |
5
|
eqeq1d |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B <-> ( 1 x. A ) = B ) ) |
| 7 |
|
prmz |
|- ( A e. Prime -> A e. ZZ ) |
| 8 |
7
|
zcnd |
|- ( A e. Prime -> A e. CC ) |
| 9 |
8
|
mullidd |
|- ( A e. Prime -> ( 1 x. A ) = A ) |
| 10 |
9
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 1 x. A ) = A ) |
| 11 |
10
|
eqeq1d |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 1 x. A ) = B <-> A = B ) ) |
| 12 |
11
|
biimpd |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 1 x. A ) = B -> A = B ) ) |
| 13 |
12
|
adantl |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( 1 x. A ) = B -> A = B ) ) |
| 14 |
6 13
|
sylbid |
|- ( ( Z = 1 /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) |
| 15 |
14
|
ex |
|- ( Z = 1 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 16 |
|
prmuz2 |
|- ( A e. Prime -> A e. ( ZZ>= ` 2 ) ) |
| 17 |
16
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> A e. ( ZZ>= ` 2 ) ) |
| 18 |
|
nprm |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ A e. ( ZZ>= ` 2 ) ) -> -. ( Z x. A ) e. Prime ) |
| 19 |
17 18
|
sylan2 |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> -. ( Z x. A ) e. Prime ) |
| 20 |
|
eleq1 |
|- ( ( Z x. A ) = B -> ( ( Z x. A ) e. Prime <-> B e. Prime ) ) |
| 21 |
20
|
notbid |
|- ( ( Z x. A ) = B -> ( -. ( Z x. A ) e. Prime <-> -. B e. Prime ) ) |
| 22 |
|
pm2.24 |
|- ( B e. Prime -> ( -. B e. Prime -> A = B ) ) |
| 23 |
22
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( -. B e. Prime -> A = B ) ) |
| 24 |
23
|
adantl |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( -. B e. Prime -> A = B ) ) |
| 25 |
24
|
com12 |
|- ( -. B e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> A = B ) ) |
| 26 |
21 25
|
biimtrdi |
|- ( ( Z x. A ) = B -> ( -. ( Z x. A ) e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> A = B ) ) ) |
| 27 |
26
|
com3l |
|- ( -. ( Z x. A ) e. Prime -> ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 28 |
19 27
|
mpcom |
|- ( ( Z e. ( ZZ>= ` 2 ) /\ ( A e. Prime /\ B e. Prime ) ) -> ( ( Z x. A ) = B -> A = B ) ) |
| 29 |
28
|
ex |
|- ( Z e. ( ZZ>= ` 2 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 30 |
15 29
|
jaoi |
|- ( ( Z = 1 \/ Z e. ( ZZ>= ` 2 ) ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 31 |
3 30
|
sylbi |
|- ( Z e. NN -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 32 |
|
oveq1 |
|- ( Z = 0 -> ( Z x. A ) = ( 0 x. A ) ) |
| 33 |
32
|
eqeq1d |
|- ( Z = 0 -> ( ( Z x. A ) = B <-> ( 0 x. A ) = B ) ) |
| 34 |
|
prmnn |
|- ( A e. Prime -> A e. NN ) |
| 35 |
34
|
nnred |
|- ( A e. Prime -> A e. RR ) |
| 36 |
|
mul02lem2 |
|- ( A e. RR -> ( 0 x. A ) = 0 ) |
| 37 |
35 36
|
syl |
|- ( A e. Prime -> ( 0 x. A ) = 0 ) |
| 38 |
37
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 0 x. A ) = 0 ) |
| 39 |
38
|
eqeq1d |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 0 x. A ) = B <-> 0 = B ) ) |
| 40 |
|
prmnn |
|- ( B e. Prime -> B e. NN ) |
| 41 |
|
elnnne0 |
|- ( B e. NN <-> ( B e. NN0 /\ B =/= 0 ) ) |
| 42 |
|
eqneqall |
|- ( B = 0 -> ( B =/= 0 -> A = B ) ) |
| 43 |
42
|
eqcoms |
|- ( 0 = B -> ( B =/= 0 -> A = B ) ) |
| 44 |
43
|
com12 |
|- ( B =/= 0 -> ( 0 = B -> A = B ) ) |
| 45 |
44
|
adantl |
|- ( ( B e. NN0 /\ B =/= 0 ) -> ( 0 = B -> A = B ) ) |
| 46 |
41 45
|
sylbi |
|- ( B e. NN -> ( 0 = B -> A = B ) ) |
| 47 |
40 46
|
syl |
|- ( B e. Prime -> ( 0 = B -> A = B ) ) |
| 48 |
47
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( 0 = B -> A = B ) ) |
| 49 |
39 48
|
sylbid |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( 0 x. A ) = B -> A = B ) ) |
| 50 |
49
|
com12 |
|- ( ( 0 x. A ) = B -> ( ( A e. Prime /\ B e. Prime ) -> A = B ) ) |
| 51 |
33 50
|
biimtrdi |
|- ( Z = 0 -> ( ( Z x. A ) = B -> ( ( A e. Prime /\ B e. Prime ) -> A = B ) ) ) |
| 52 |
51
|
com23 |
|- ( Z = 0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 53 |
31 52
|
jaoi |
|- ( ( Z e. NN \/ Z = 0 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 54 |
2 53
|
sylbi |
|- ( Z e. NN0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 55 |
|
elnnz |
|- ( -u Z e. NN <-> ( -u Z e. ZZ /\ 0 < -u Z ) ) |
| 56 |
|
lt0neg1 |
|- ( Z e. RR -> ( Z < 0 <-> 0 < -u Z ) ) |
| 57 |
34
|
nngt0d |
|- ( A e. Prime -> 0 < A ) |
| 58 |
57
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> 0 < A ) |
| 59 |
|
simpr |
|- ( ( Z e. RR /\ Z < 0 ) -> Z < 0 ) |
| 60 |
58 59
|
anim12ci |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( Z < 0 /\ 0 < A ) ) |
| 61 |
60
|
orcd |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( ( Z < 0 /\ 0 < A ) \/ ( 0 < Z /\ A < 0 ) ) ) |
| 62 |
|
simprl |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> Z e. RR ) |
| 63 |
35
|
adantr |
|- ( ( A e. Prime /\ B e. Prime ) -> A e. RR ) |
| 64 |
63
|
adantr |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> A e. RR ) |
| 65 |
62 64
|
mul2lt0bi |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( ( Z x. A ) < 0 <-> ( ( Z < 0 /\ 0 < A ) \/ ( 0 < Z /\ A < 0 ) ) ) ) |
| 66 |
61 65
|
mpbird |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z e. RR /\ Z < 0 ) ) -> ( Z x. A ) < 0 ) |
| 67 |
66
|
ex |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z e. RR /\ Z < 0 ) -> ( Z x. A ) < 0 ) ) |
| 68 |
|
breq1 |
|- ( ( Z x. A ) = B -> ( ( Z x. A ) < 0 <-> B < 0 ) ) |
| 69 |
68
|
adantl |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( ( Z x. A ) < 0 <-> B < 0 ) ) |
| 70 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
| 71 |
|
nn0nlt0 |
|- ( B e. NN0 -> -. B < 0 ) |
| 72 |
71
|
pm2.21d |
|- ( B e. NN0 -> ( B < 0 -> A = B ) ) |
| 73 |
70 72
|
syl |
|- ( B e. NN -> ( B < 0 -> A = B ) ) |
| 74 |
40 73
|
syl |
|- ( B e. Prime -> ( B < 0 -> A = B ) ) |
| 75 |
74
|
adantl |
|- ( ( A e. Prime /\ B e. Prime ) -> ( B < 0 -> A = B ) ) |
| 76 |
75
|
adantr |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( B < 0 -> A = B ) ) |
| 77 |
69 76
|
sylbid |
|- ( ( ( A e. Prime /\ B e. Prime ) /\ ( Z x. A ) = B ) -> ( ( Z x. A ) < 0 -> A = B ) ) |
| 78 |
77
|
ex |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> ( ( Z x. A ) < 0 -> A = B ) ) ) |
| 79 |
78
|
com23 |
|- ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) < 0 -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 80 |
67 79
|
syldc |
|- ( ( Z e. RR /\ Z < 0 ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 81 |
80
|
ex |
|- ( Z e. RR -> ( Z < 0 -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
| 82 |
56 81
|
sylbird |
|- ( Z e. RR -> ( 0 < -u Z -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
| 83 |
82
|
adantld |
|- ( Z e. RR -> ( ( -u Z e. ZZ /\ 0 < -u Z ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
| 84 |
55 83
|
biimtrid |
|- ( Z e. RR -> ( -u Z e. NN -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) ) |
| 85 |
84
|
imp |
|- ( ( Z e. RR /\ -u Z e. NN ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 86 |
54 85
|
jaoi |
|- ( ( Z e. NN0 \/ ( Z e. RR /\ -u Z e. NN ) ) -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 87 |
1 86
|
sylbi |
|- ( Z e. ZZ -> ( ( A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) ) |
| 88 |
87
|
3impib |
|- ( ( Z e. ZZ /\ A e. Prime /\ B e. Prime ) -> ( ( Z x. A ) = B -> A = B ) ) |