| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|
| 2 |
|
elnn0 |
|
| 3 |
|
elnn1uz2 |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
|
prmz |
|
| 8 |
7
|
zcnd |
|
| 9 |
8
|
mullidd |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
11
|
biimpd |
|
| 13 |
12
|
adantl |
|
| 14 |
6 13
|
sylbid |
|
| 15 |
14
|
ex |
|
| 16 |
|
prmuz2 |
|
| 17 |
16
|
adantr |
|
| 18 |
|
nprm |
|
| 19 |
17 18
|
sylan2 |
|
| 20 |
|
eleq1 |
|
| 21 |
20
|
notbid |
|
| 22 |
|
pm2.24 |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
com12 |
|
| 26 |
21 25
|
biimtrdi |
|
| 27 |
26
|
com3l |
|
| 28 |
19 27
|
mpcom |
|
| 29 |
28
|
ex |
|
| 30 |
15 29
|
jaoi |
|
| 31 |
3 30
|
sylbi |
|
| 32 |
|
oveq1 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
|
prmnn |
|
| 35 |
34
|
nnred |
|
| 36 |
|
mul02lem2 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
|
prmnn |
|
| 41 |
|
elnnne0 |
|
| 42 |
|
eqneqall |
|
| 43 |
42
|
eqcoms |
|
| 44 |
43
|
com12 |
|
| 45 |
44
|
adantl |
|
| 46 |
41 45
|
sylbi |
|
| 47 |
40 46
|
syl |
|
| 48 |
47
|
adantl |
|
| 49 |
39 48
|
sylbid |
|
| 50 |
49
|
com12 |
|
| 51 |
33 50
|
biimtrdi |
|
| 52 |
51
|
com23 |
|
| 53 |
31 52
|
jaoi |
|
| 54 |
2 53
|
sylbi |
|
| 55 |
|
elnnz |
|
| 56 |
|
lt0neg1 |
|
| 57 |
34
|
nngt0d |
|
| 58 |
57
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
58 59
|
anim12ci |
|
| 61 |
60
|
orcd |
|
| 62 |
|
simprl |
|
| 63 |
35
|
adantr |
|
| 64 |
63
|
adantr |
|
| 65 |
62 64
|
mul2lt0bi |
|
| 66 |
61 65
|
mpbird |
|
| 67 |
66
|
ex |
|
| 68 |
|
breq1 |
|
| 69 |
68
|
adantl |
|
| 70 |
|
nnnn0 |
|
| 71 |
|
nn0nlt0 |
|
| 72 |
71
|
pm2.21d |
|
| 73 |
70 72
|
syl |
|
| 74 |
40 73
|
syl |
|
| 75 |
74
|
adantl |
|
| 76 |
75
|
adantr |
|
| 77 |
69 76
|
sylbid |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
com23 |
|
| 80 |
67 79
|
syldc |
|
| 81 |
80
|
ex |
|
| 82 |
56 81
|
sylbird |
|
| 83 |
82
|
adantld |
|
| 84 |
55 83
|
biimtrid |
|
| 85 |
84
|
imp |
|
| 86 |
54 85
|
jaoi |
|
| 87 |
1 86
|
sylbi |
|
| 88 |
87
|
3impib |
|