Metamath Proof Explorer


Theorem mul2lt0bi

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 φ A
mul2lt0.2 φ B
Assertion mul2lt0bi φ A B < 0 A < 0 0 < B 0 < A B < 0

Proof

Step Hyp Ref Expression
1 mul2lt0.1 φ A
2 mul2lt0.2 φ B
3 1 2 remulcld φ A B
4 0red φ 0
5 3 4 ltnled φ A B < 0 ¬ 0 A B
6 1 adantr φ 0 A 0 B A
7 2 adantr φ 0 A 0 B B
8 simprl φ 0 A 0 B 0 A
9 simprr φ 0 A 0 B 0 B
10 6 7 8 9 mulge0d φ 0 A 0 B 0 A B
11 10 ex φ 0 A 0 B 0 A B
12 11 con3d φ ¬ 0 A B ¬ 0 A 0 B
13 5 12 sylbid φ A B < 0 ¬ 0 A 0 B
14 ianor ¬ 0 A 0 B ¬ 0 A ¬ 0 B
15 13 14 syl6ib φ A B < 0 ¬ 0 A ¬ 0 B
16 1 4 ltnled φ A < 0 ¬ 0 A
17 2 4 ltnled φ B < 0 ¬ 0 B
18 16 17 orbi12d φ A < 0 B < 0 ¬ 0 A ¬ 0 B
19 15 18 sylibrd φ A B < 0 A < 0 B < 0
20 19 imp φ A B < 0 A < 0 B < 0
21 simpr φ A B < 0 A < 0 A < 0
22 1 adantr φ A B < 0 A
23 2 adantr φ A B < 0 B
24 simpr φ A B < 0 A B < 0
25 22 23 24 mul2lt0llt0 φ A B < 0 A < 0 0 < B
26 21 25 jca φ A B < 0 A < 0 A < 0 0 < B
27 26 ex φ A B < 0 A < 0 A < 0 0 < B
28 22 23 24 mul2lt0rlt0 φ A B < 0 B < 0 0 < A
29 simpr φ A B < 0 B < 0 B < 0
30 28 29 jca φ A B < 0 B < 0 0 < A B < 0
31 30 ex φ A B < 0 B < 0 0 < A B < 0
32 27 31 orim12d φ A B < 0 A < 0 B < 0 A < 0 0 < B 0 < A B < 0
33 20 32 mpd φ A B < 0 A < 0 0 < B 0 < A B < 0
34 1 adantr φ A < 0 0 < B A
35 0red φ A < 0 0 < B 0
36 2 adantr φ A < 0 0 < B B
37 simprr φ A < 0 0 < B 0 < B
38 36 37 elrpd φ A < 0 0 < B B +
39 simprl φ A < 0 0 < B A < 0
40 34 35 38 39 ltmul1dd φ A < 0 0 < B A B < 0 B
41 36 recnd φ A < 0 0 < B B
42 41 mul02d φ A < 0 0 < B 0 B = 0
43 40 42 breqtrd φ A < 0 0 < B A B < 0
44 2 adantr φ 0 < A B < 0 B
45 0red φ 0 < A B < 0 0
46 1 adantr φ 0 < A B < 0 A
47 simprl φ 0 < A B < 0 0 < A
48 46 47 elrpd φ 0 < A B < 0 A +
49 simprr φ 0 < A B < 0 B < 0
50 44 45 48 49 ltmul2dd φ 0 < A B < 0 A B < A 0
51 46 recnd φ 0 < A B < 0 A
52 51 mul01d φ 0 < A B < 0 A 0 = 0
53 50 52 breqtrd φ 0 < A B < 0 A B < 0
54 43 53 jaodan φ A < 0 0 < B 0 < A B < 0 A B < 0
55 33 54 impbida φ A B < 0 A < 0 0 < B 0 < A B < 0