| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
⊢ ( 𝑍 ∈ ℤ ↔ ( 𝑍 ∈ ℕ0 ∨ ( 𝑍 ∈ ℝ ∧ - 𝑍 ∈ ℕ ) ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝑍 ∈ ℕ0 ↔ ( 𝑍 ∈ ℕ ∨ 𝑍 = 0 ) ) |
| 3 |
|
elnn1uz2 |
⊢ ( 𝑍 ∈ ℕ ↔ ( 𝑍 = 1 ∨ 𝑍 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑍 = 1 → ( 𝑍 · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑍 = 1 ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( 𝑍 · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( ( 𝑍 = 1 ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ( 𝑍 · 𝐴 ) = 𝐵 ↔ ( 1 · 𝐴 ) = 𝐵 ) ) |
| 7 |
|
prmz |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℤ ) |
| 8 |
7
|
zcnd |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℂ ) |
| 9 |
8
|
mullidd |
⊢ ( 𝐴 ∈ ℙ → ( 1 · 𝐴 ) = 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 11 |
10
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 1 · 𝐴 ) = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 12 |
11
|
biimpd |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 1 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑍 = 1 ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ( 1 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |
| 14 |
6 13
|
sylbid |
⊢ ( ( 𝑍 = 1 ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |
| 15 |
14
|
ex |
⊢ ( 𝑍 = 1 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 16 |
|
prmuz2 |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 18 |
|
nprm |
⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝑍 · 𝐴 ) ∈ ℙ ) |
| 19 |
17 18
|
sylan2 |
⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ¬ ( 𝑍 · 𝐴 ) ∈ ℙ ) |
| 20 |
|
eleq1 |
⊢ ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ( 𝑍 · 𝐴 ) ∈ ℙ ↔ 𝐵 ∈ ℙ ) ) |
| 21 |
20
|
notbid |
⊢ ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ¬ ( 𝑍 · 𝐴 ) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ ) ) |
| 22 |
|
pm2.24 |
⊢ ( 𝐵 ∈ ℙ → ( ¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵 ) ) |
| 25 |
24
|
com12 |
⊢ ( ¬ 𝐵 ∈ ℙ → ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → 𝐴 = 𝐵 ) ) |
| 26 |
21 25
|
biimtrdi |
⊢ ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ¬ ( 𝑍 · 𝐴 ) ∈ ℙ → ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → 𝐴 = 𝐵 ) ) ) |
| 27 |
26
|
com3l |
⊢ ( ¬ ( 𝑍 · 𝐴 ) ∈ ℙ → ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 28 |
19 27
|
mpcom |
⊢ ( ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |
| 29 |
28
|
ex |
⊢ ( 𝑍 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 30 |
15 29
|
jaoi |
⊢ ( ( 𝑍 = 1 ∨ 𝑍 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 31 |
3 30
|
sylbi |
⊢ ( 𝑍 ∈ ℕ → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑍 = 0 → ( 𝑍 · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝑍 = 0 → ( ( 𝑍 · 𝐴 ) = 𝐵 ↔ ( 0 · 𝐴 ) = 𝐵 ) ) |
| 34 |
|
prmnn |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℕ ) |
| 35 |
34
|
nnred |
⊢ ( 𝐴 ∈ ℙ → 𝐴 ∈ ℝ ) |
| 36 |
|
mul02lem2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 ) |
| 37 |
35 36
|
syl |
⊢ ( 𝐴 ∈ ℙ → ( 0 · 𝐴 ) = 0 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( 0 · 𝐴 ) = 0 ) |
| 39 |
38
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 0 · 𝐴 ) = 𝐵 ↔ 0 = 𝐵 ) ) |
| 40 |
|
prmnn |
⊢ ( 𝐵 ∈ ℙ → 𝐵 ∈ ℕ ) |
| 41 |
|
elnnne0 |
⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0 ) ) |
| 42 |
|
eqneqall |
⊢ ( 𝐵 = 0 → ( 𝐵 ≠ 0 → 𝐴 = 𝐵 ) ) |
| 43 |
42
|
eqcoms |
⊢ ( 0 = 𝐵 → ( 𝐵 ≠ 0 → 𝐴 = 𝐵 ) ) |
| 44 |
43
|
com12 |
⊢ ( 𝐵 ≠ 0 → ( 0 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0 ) → ( 0 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 46 |
41 45
|
sylbi |
⊢ ( 𝐵 ∈ ℕ → ( 0 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 47 |
40 46
|
syl |
⊢ ( 𝐵 ∈ ℙ → ( 0 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( 0 = 𝐵 → 𝐴 = 𝐵 ) ) |
| 49 |
39 48
|
sylbid |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 0 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |
| 50 |
49
|
com12 |
⊢ ( ( 0 · 𝐴 ) = 𝐵 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → 𝐴 = 𝐵 ) ) |
| 51 |
33 50
|
biimtrdi |
⊢ ( 𝑍 = 0 → ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → 𝐴 = 𝐵 ) ) ) |
| 52 |
51
|
com23 |
⊢ ( 𝑍 = 0 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 53 |
31 52
|
jaoi |
⊢ ( ( 𝑍 ∈ ℕ ∨ 𝑍 = 0 ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 54 |
2 53
|
sylbi |
⊢ ( 𝑍 ∈ ℕ0 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 55 |
|
elnnz |
⊢ ( - 𝑍 ∈ ℕ ↔ ( - 𝑍 ∈ ℤ ∧ 0 < - 𝑍 ) ) |
| 56 |
|
lt0neg1 |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 < 0 ↔ 0 < - 𝑍 ) ) |
| 57 |
34
|
nngt0d |
⊢ ( 𝐴 ∈ ℙ → 0 < 𝐴 ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → 0 < 𝐴 ) |
| 59 |
|
simpr |
⊢ ( ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) → 𝑍 < 0 ) |
| 60 |
58 59
|
anim12ci |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → ( 𝑍 < 0 ∧ 0 < 𝐴 ) ) |
| 61 |
60
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → ( ( 𝑍 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 𝑍 ∧ 𝐴 < 0 ) ) ) |
| 62 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → 𝑍 ∈ ℝ ) |
| 63 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → 𝐴 ∈ ℝ ) |
| 65 |
62 64
|
mul2lt0bi |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → ( ( 𝑍 · 𝐴 ) < 0 ↔ ( ( 𝑍 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 𝑍 ∧ 𝐴 < 0 ) ) ) ) |
| 66 |
61 65
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) ) → ( 𝑍 · 𝐴 ) < 0 ) |
| 67 |
66
|
ex |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) → ( 𝑍 · 𝐴 ) < 0 ) ) |
| 68 |
|
breq1 |
⊢ ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ( 𝑍 · 𝐴 ) < 0 ↔ 𝐵 < 0 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 · 𝐴 ) = 𝐵 ) → ( ( 𝑍 · 𝐴 ) < 0 ↔ 𝐵 < 0 ) ) |
| 70 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
| 71 |
|
nn0nlt0 |
⊢ ( 𝐵 ∈ ℕ0 → ¬ 𝐵 < 0 ) |
| 72 |
71
|
pm2.21d |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 < 0 → 𝐴 = 𝐵 ) ) |
| 73 |
70 72
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 < 0 → 𝐴 = 𝐵 ) ) |
| 74 |
40 73
|
syl |
⊢ ( 𝐵 ∈ ℙ → ( 𝐵 < 0 → 𝐴 = 𝐵 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( 𝐵 < 0 → 𝐴 = 𝐵 ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 · 𝐴 ) = 𝐵 ) → ( 𝐵 < 0 → 𝐴 = 𝐵 ) ) |
| 77 |
69 76
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) ∧ ( 𝑍 · 𝐴 ) = 𝐵 ) → ( ( 𝑍 · 𝐴 ) < 0 → 𝐴 = 𝐵 ) ) |
| 78 |
77
|
ex |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → ( ( 𝑍 · 𝐴 ) < 0 → 𝐴 = 𝐵 ) ) ) |
| 79 |
78
|
com23 |
⊢ ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) < 0 → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 80 |
67 79
|
syldc |
⊢ ( ( 𝑍 ∈ ℝ ∧ 𝑍 < 0 ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 81 |
80
|
ex |
⊢ ( 𝑍 ∈ ℝ → ( 𝑍 < 0 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) ) |
| 82 |
56 81
|
sylbird |
⊢ ( 𝑍 ∈ ℝ → ( 0 < - 𝑍 → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) ) |
| 83 |
82
|
adantld |
⊢ ( 𝑍 ∈ ℝ → ( ( - 𝑍 ∈ ℤ ∧ 0 < - 𝑍 ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) ) |
| 84 |
55 83
|
biimtrid |
⊢ ( 𝑍 ∈ ℝ → ( - 𝑍 ∈ ℕ → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( 𝑍 ∈ ℝ ∧ - 𝑍 ∈ ℕ ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 86 |
54 85
|
jaoi |
⊢ ( ( 𝑍 ∈ ℕ0 ∨ ( 𝑍 ∈ ℝ ∧ - 𝑍 ∈ ℕ ) ) → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 87 |
1 86
|
sylbi |
⊢ ( 𝑍 ∈ ℤ → ( ( 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 88 |
87
|
3impib |
⊢ ( ( 𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑍 · 𝐴 ) = 𝐵 → 𝐴 = 𝐵 ) ) |