Step |
Hyp |
Ref |
Expression |
1 |
|
lincval1.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincval1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincval1.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
4 |
|
lincval1.f |
⊢ 𝐹 = { 〈 𝑉 , ( 0g ‘ 𝑆 ) 〉 } |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
6 |
2 3 5
|
lmod0cl |
⊢ ( 𝑀 ∈ LMod → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
8 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
9 |
1 2 3 8 4
|
lincvalsn |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ ( 0g ‘ 𝑆 ) ∈ 𝑅 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ) |
10 |
7 9
|
mpd3an3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
12 |
1 2 8 5 11
|
lmod0vs |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( ( 0g ‘ 𝑆 ) ( ·𝑠 ‘ 𝑀 ) 𝑉 ) = ( 0g ‘ 𝑀 ) ) |
13 |
10 12
|
eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g ‘ 𝑀 ) ) |