Metamath Proof Explorer


Theorem lincval1

Description: The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypotheses lincval1.b 𝐵 = ( Base ‘ 𝑀 )
lincval1.s 𝑆 = ( Scalar ‘ 𝑀 )
lincval1.r 𝑅 = ( Base ‘ 𝑆 )
lincval1.f 𝐹 = { ⟨ 𝑉 , ( 0g𝑆 ) ⟩ }
Assertion lincval1 ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g𝑀 ) )

Proof

Step Hyp Ref Expression
1 lincval1.b 𝐵 = ( Base ‘ 𝑀 )
2 lincval1.s 𝑆 = ( Scalar ‘ 𝑀 )
3 lincval1.r 𝑅 = ( Base ‘ 𝑆 )
4 lincval1.f 𝐹 = { ⟨ 𝑉 , ( 0g𝑆 ) ⟩ }
5 eqid ( 0g𝑆 ) = ( 0g𝑆 )
6 2 3 5 lmod0cl ( 𝑀 ∈ LMod → ( 0g𝑆 ) ∈ 𝑅 )
7 6 adantr ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 0g𝑆 ) ∈ 𝑅 )
8 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
9 1 2 3 8 4 lincvalsn ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ∧ ( 0g𝑆 ) ∈ 𝑅 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( ( 0g𝑆 ) ( ·𝑠𝑀 ) 𝑉 ) )
10 7 9 mpd3an3 ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( ( 0g𝑆 ) ( ·𝑠𝑀 ) 𝑉 ) )
11 eqid ( 0g𝑀 ) = ( 0g𝑀 )
12 1 2 8 5 11 lmod0vs ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( ( 0g𝑆 ) ( ·𝑠𝑀 ) 𝑉 ) = ( 0g𝑀 ) )
13 10 12 eqtrd ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g𝑀 ) )