Step |
Hyp |
Ref |
Expression |
1 |
|
lincval1.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincval1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincval1.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
4 |
|
lincval1.f |
⊢ 𝐹 = { 〈 𝑉 , ( 0g ‘ 𝑆 ) 〉 } |
5 |
|
simpr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → 𝑉 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
7 |
2 3 6
|
lmod0cl |
⊢ ( 𝑀 ∈ LMod → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
9 |
3
|
fvexi |
⊢ 𝑅 ∈ V |
10 |
9
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → 𝑅 ∈ V ) |
11 |
4
|
mapsnop |
⊢ ( ( 𝑉 ∈ 𝐵 ∧ ( 0g ‘ 𝑆 ) ∈ 𝑅 ∧ 𝑅 ∈ V ) → 𝐹 ∈ ( 𝑅 ↑m { 𝑉 } ) ) |
12 |
5 8 10 11
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 ↑m { 𝑉 } ) ) |
13 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝑅 ↑m { 𝑉 } ) → 𝐹 : { 𝑉 } ⟶ 𝑅 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → 𝐹 : { 𝑉 } ⟶ 𝑅 ) |
15 |
|
snfi |
⊢ { 𝑉 } ∈ Fin |
16 |
15
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → { 𝑉 } ∈ Fin ) |
17 |
|
fvex |
⊢ ( 0g ‘ 𝑆 ) ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 0g ‘ 𝑆 ) ∈ V ) |
19 |
14 16 18
|
fdmfifsupp |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → 𝐹 finSupp ( 0g ‘ 𝑆 ) ) |
20 |
1 2 3 4
|
lincval1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g ‘ 𝑀 ) ) |
21 |
12 19 20
|
3jca |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ∈ ( 𝑅 ↑m { 𝑉 } ) ∧ 𝐹 finSupp ( 0g ‘ 𝑆 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g ‘ 𝑀 ) ) ) |