Metamath Proof Explorer


Theorem lcosn0

Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincval1.b 𝐵 = ( Base ‘ 𝑀 )
lincval1.s 𝑆 = ( Scalar ‘ 𝑀 )
lincval1.r 𝑅 = ( Base ‘ 𝑆 )
lincval1.f 𝐹 = { ⟨ 𝑉 , ( 0g𝑆 ) ⟩ }
Assertion lcosn0 ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ∈ ( 𝑅m { 𝑉 } ) ∧ 𝐹 finSupp ( 0g𝑆 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 lincval1.b 𝐵 = ( Base ‘ 𝑀 )
2 lincval1.s 𝑆 = ( Scalar ‘ 𝑀 )
3 lincval1.r 𝑅 = ( Base ‘ 𝑆 )
4 lincval1.f 𝐹 = { ⟨ 𝑉 , ( 0g𝑆 ) ⟩ }
5 simpr ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → 𝑉𝐵 )
6 eqid ( 0g𝑆 ) = ( 0g𝑆 )
7 2 3 6 lmod0cl ( 𝑀 ∈ LMod → ( 0g𝑆 ) ∈ 𝑅 )
8 7 adantr ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 0g𝑆 ) ∈ 𝑅 )
9 3 fvexi 𝑅 ∈ V
10 9 a1i ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → 𝑅 ∈ V )
11 4 mapsnop ( ( 𝑉𝐵 ∧ ( 0g𝑆 ) ∈ 𝑅𝑅 ∈ V ) → 𝐹 ∈ ( 𝑅m { 𝑉 } ) )
12 5 8 10 11 syl3anc ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → 𝐹 ∈ ( 𝑅m { 𝑉 } ) )
13 elmapi ( 𝐹 ∈ ( 𝑅m { 𝑉 } ) → 𝐹 : { 𝑉 } ⟶ 𝑅 )
14 12 13 syl ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → 𝐹 : { 𝑉 } ⟶ 𝑅 )
15 snfi { 𝑉 } ∈ Fin
16 15 a1i ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → { 𝑉 } ∈ Fin )
17 fvex ( 0g𝑆 ) ∈ V
18 17 a1i ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 0g𝑆 ) ∈ V )
19 14 16 18 fdmfifsupp ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → 𝐹 finSupp ( 0g𝑆 ) )
20 1 2 3 4 lincval1 ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g𝑀 ) )
21 12 19 20 3jca ( ( 𝑀 ∈ LMod ∧ 𝑉𝐵 ) → ( 𝐹 ∈ ( 𝑅m { 𝑉 } ) ∧ 𝐹 finSupp ( 0g𝑆 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) { 𝑉 } ) = ( 0g𝑀 ) ) )