Step |
Hyp |
Ref |
Expression |
1 |
|
mapsnop.f |
⊢ 𝐹 = { 〈 𝑋 , 𝑌 〉 } |
2 |
|
fsng |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ) → ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ↔ 𝐹 = { 〈 𝑋 , 𝑌 〉 } ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ↔ 𝐹 = { 〈 𝑋 , 𝑌 〉 } ) ) |
4 |
1 3
|
mpbiri |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → 𝐹 : { 𝑋 } ⟶ { 𝑌 } ) |
5 |
|
snssi |
⊢ ( 𝑌 ∈ 𝑅 → { 𝑌 } ⊆ 𝑅 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → { 𝑌 } ⊆ 𝑅 ) |
7 |
4 6
|
fssd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → 𝐹 : { 𝑋 } ⟶ 𝑅 ) |
8 |
|
simp3 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → 𝑅 ∈ 𝑊 ) |
9 |
|
snex |
⊢ { 𝑋 } ∈ V |
10 |
|
elmapg |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ { 𝑋 } ∈ V ) → ( 𝐹 ∈ ( 𝑅 ↑m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝑅 ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 ↑m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝑅 ) ) |
12 |
7 11
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑅 ∧ 𝑅 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 ↑m { 𝑋 } ) ) |