Metamath Proof Explorer


Theorem mapsnop

Description: A singleton of an ordered pair as an element of the mapping operation. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypothesis mapsnop.f 𝐹 = { ⟨ 𝑋 , 𝑌 ⟩ }
Assertion mapsnop ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → 𝐹 ∈ ( 𝑅m { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 mapsnop.f 𝐹 = { ⟨ 𝑋 , 𝑌 ⟩ }
2 fsng ( ( 𝑋𝑉𝑌𝑅 ) → ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ↔ 𝐹 = { ⟨ 𝑋 , 𝑌 ⟩ } ) )
3 2 3adant3 ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → ( 𝐹 : { 𝑋 } ⟶ { 𝑌 } ↔ 𝐹 = { ⟨ 𝑋 , 𝑌 ⟩ } ) )
4 1 3 mpbiri ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → 𝐹 : { 𝑋 } ⟶ { 𝑌 } )
5 snssi ( 𝑌𝑅 → { 𝑌 } ⊆ 𝑅 )
6 5 3ad2ant2 ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → { 𝑌 } ⊆ 𝑅 )
7 4 6 fssd ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → 𝐹 : { 𝑋 } ⟶ 𝑅 )
8 simp3 ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → 𝑅𝑊 )
9 snex { 𝑋 } ∈ V
10 elmapg ( ( 𝑅𝑊 ∧ { 𝑋 } ∈ V ) → ( 𝐹 ∈ ( 𝑅m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝑅 ) )
11 8 9 10 sylancl ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → ( 𝐹 ∈ ( 𝑅m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝑅 ) )
12 7 11 mpbird ( ( 𝑋𝑉𝑌𝑅𝑅𝑊 ) → 𝐹 ∈ ( 𝑅m { 𝑋 } ) )