| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincval1.b |
|- B = ( Base ` M ) |
| 2 |
|
lincval1.s |
|- S = ( Scalar ` M ) |
| 3 |
|
lincval1.r |
|- R = ( Base ` S ) |
| 4 |
|
lincval1.f |
|- F = { <. V , ( 0g ` S ) >. } |
| 5 |
|
simpr |
|- ( ( M e. LMod /\ V e. B ) -> V e. B ) |
| 6 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 7 |
2 3 6
|
lmod0cl |
|- ( M e. LMod -> ( 0g ` S ) e. R ) |
| 8 |
7
|
adantr |
|- ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. R ) |
| 9 |
3
|
fvexi |
|- R e. _V |
| 10 |
9
|
a1i |
|- ( ( M e. LMod /\ V e. B ) -> R e. _V ) |
| 11 |
4
|
mapsnop |
|- ( ( V e. B /\ ( 0g ` S ) e. R /\ R e. _V ) -> F e. ( R ^m { V } ) ) |
| 12 |
5 8 10 11
|
syl3anc |
|- ( ( M e. LMod /\ V e. B ) -> F e. ( R ^m { V } ) ) |
| 13 |
|
elmapi |
|- ( F e. ( R ^m { V } ) -> F : { V } --> R ) |
| 14 |
12 13
|
syl |
|- ( ( M e. LMod /\ V e. B ) -> F : { V } --> R ) |
| 15 |
|
snfi |
|- { V } e. Fin |
| 16 |
15
|
a1i |
|- ( ( M e. LMod /\ V e. B ) -> { V } e. Fin ) |
| 17 |
|
fvex |
|- ( 0g ` S ) e. _V |
| 18 |
17
|
a1i |
|- ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. _V ) |
| 19 |
14 16 18
|
fdmfifsupp |
|- ( ( M e. LMod /\ V e. B ) -> F finSupp ( 0g ` S ) ) |
| 20 |
1 2 3 4
|
lincval1 |
|- ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( 0g ` M ) ) |
| 21 |
12 19 20
|
3jca |
|- ( ( M e. LMod /\ V e. B ) -> ( F e. ( R ^m { V } ) /\ F finSupp ( 0g ` S ) /\ ( F ( linC ` M ) { V } ) = ( 0g ` M ) ) ) |