Metamath Proof Explorer


Theorem lcosn0

Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincval1.b
|- B = ( Base ` M )
lincval1.s
|- S = ( Scalar ` M )
lincval1.r
|- R = ( Base ` S )
lincval1.f
|- F = { <. V , ( 0g ` S ) >. }
Assertion lcosn0
|- ( ( M e. LMod /\ V e. B ) -> ( F e. ( R ^m { V } ) /\ F finSupp ( 0g ` S ) /\ ( F ( linC ` M ) { V } ) = ( 0g ` M ) ) )

Proof

Step Hyp Ref Expression
1 lincval1.b
 |-  B = ( Base ` M )
2 lincval1.s
 |-  S = ( Scalar ` M )
3 lincval1.r
 |-  R = ( Base ` S )
4 lincval1.f
 |-  F = { <. V , ( 0g ` S ) >. }
5 simpr
 |-  ( ( M e. LMod /\ V e. B ) -> V e. B )
6 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
7 2 3 6 lmod0cl
 |-  ( M e. LMod -> ( 0g ` S ) e. R )
8 7 adantr
 |-  ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. R )
9 3 fvexi
 |-  R e. _V
10 9 a1i
 |-  ( ( M e. LMod /\ V e. B ) -> R e. _V )
11 4 mapsnop
 |-  ( ( V e. B /\ ( 0g ` S ) e. R /\ R e. _V ) -> F e. ( R ^m { V } ) )
12 5 8 10 11 syl3anc
 |-  ( ( M e. LMod /\ V e. B ) -> F e. ( R ^m { V } ) )
13 elmapi
 |-  ( F e. ( R ^m { V } ) -> F : { V } --> R )
14 12 13 syl
 |-  ( ( M e. LMod /\ V e. B ) -> F : { V } --> R )
15 snfi
 |-  { V } e. Fin
16 15 a1i
 |-  ( ( M e. LMod /\ V e. B ) -> { V } e. Fin )
17 fvex
 |-  ( 0g ` S ) e. _V
18 17 a1i
 |-  ( ( M e. LMod /\ V e. B ) -> ( 0g ` S ) e. _V )
19 14 16 18 fdmfifsupp
 |-  ( ( M e. LMod /\ V e. B ) -> F finSupp ( 0g ` S ) )
20 1 2 3 4 lincval1
 |-  ( ( M e. LMod /\ V e. B ) -> ( F ( linC ` M ) { V } ) = ( 0g ` M ) )
21 12 19 20 3jca
 |-  ( ( M e. LMod /\ V e. B ) -> ( F e. ( R ^m { V } ) /\ F finSupp ( 0g ` S ) /\ ( F ( linC ` M ) { V } ) = ( 0g ` M ) ) )