Step |
Hyp |
Ref |
Expression |
1 |
|
lincvalsc0.b |
|- B = ( Base ` M ) |
2 |
|
lincvalsc0.s |
|- S = ( Scalar ` M ) |
3 |
|
lincvalsc0.0 |
|- .0. = ( 0g ` S ) |
4 |
|
lincvalsc0.z |
|- Z = ( 0g ` M ) |
5 |
|
lincvalsc0.f |
|- F = ( x e. V |-> .0. ) |
6 |
|
simpl |
|- ( ( M e. LMod /\ V e. ~P B ) -> M e. LMod ) |
7 |
2
|
eqcomi |
|- ( Scalar ` M ) = S |
8 |
7
|
fveq2i |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` S ) |
9 |
2 8 3
|
lmod0cl |
|- ( M e. LMod -> .0. e. ( Base ` ( Scalar ` M ) ) ) |
10 |
9
|
adantr |
|- ( ( M e. LMod /\ V e. ~P B ) -> .0. e. ( Base ` ( Scalar ` M ) ) ) |
11 |
10
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> .0. e. ( Base ` ( Scalar ` M ) ) ) |
12 |
11 5
|
fmptd |
|- ( ( M e. LMod /\ V e. ~P B ) -> F : V --> ( Base ` ( Scalar ` M ) ) ) |
13 |
|
fvexd |
|- ( M e. LMod -> ( Base ` ( Scalar ` M ) ) e. _V ) |
14 |
|
elmapg |
|- ( ( ( Base ` ( Scalar ` M ) ) e. _V /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
15 |
13 14
|
sylan |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
16 |
12 15
|
mpbird |
|- ( ( M e. LMod /\ V e. ~P B ) -> F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
17 |
1
|
pweqi |
|- ~P B = ~P ( Base ` M ) |
18 |
17
|
eleq2i |
|- ( V e. ~P B <-> V e. ~P ( Base ` M ) ) |
19 |
18
|
biimpi |
|- ( V e. ~P B -> V e. ~P ( Base ` M ) ) |
20 |
19
|
adantl |
|- ( ( M e. LMod /\ V e. ~P B ) -> V e. ~P ( Base ` M ) ) |
21 |
|
lincval |
|- ( ( M e. LMod /\ F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
22 |
6 16 20 21
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
23 |
|
simpr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. V ) |
24 |
3
|
fvexi |
|- .0. e. _V |
25 |
|
eqidd |
|- ( x = v -> .0. = .0. ) |
26 |
25 5
|
fvmptg |
|- ( ( v e. V /\ .0. e. _V ) -> ( F ` v ) = .0. ) |
27 |
23 24 26
|
sylancl |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( F ` v ) = .0. ) |
28 |
27
|
oveq1d |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = ( .0. ( .s ` M ) v ) ) |
29 |
6
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> M e. LMod ) |
30 |
|
elelpwi |
|- ( ( v e. V /\ V e. ~P B ) -> v e. B ) |
31 |
30
|
expcom |
|- ( V e. ~P B -> ( v e. V -> v e. B ) ) |
32 |
31
|
adantl |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V -> v e. B ) ) |
33 |
32
|
imp |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. B ) |
34 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
35 |
1 2 34 3 4
|
lmod0vs |
|- ( ( M e. LMod /\ v e. B ) -> ( .0. ( .s ` M ) v ) = Z ) |
36 |
29 33 35
|
syl2anc |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( .0. ( .s ` M ) v ) = Z ) |
37 |
28 36
|
eqtrd |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = Z ) |
38 |
37
|
mpteq2dva |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) = ( v e. V |-> Z ) ) |
39 |
38
|
oveq2d |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) = ( M gsum ( v e. V |-> Z ) ) ) |
40 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
41 |
40
|
grpmndd |
|- ( M e. LMod -> M e. Mnd ) |
42 |
4
|
gsumz |
|- ( ( M e. Mnd /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z ) |
43 |
41 42
|
sylan |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z ) |
44 |
22 39 43
|
3eqtrd |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = Z ) |