Step |
Hyp |
Ref |
Expression |
1 |
|
lincvalsc0.b |
|- B = ( Base ` M ) |
2 |
|
lincvalsc0.s |
|- S = ( Scalar ` M ) |
3 |
|
lincvalsc0.0 |
|- .0. = ( 0g ` S ) |
4 |
|
lincvalsc0.z |
|- Z = ( 0g ` M ) |
5 |
|
lincvalsc0.f |
|- F = ( x e. V |-> .0. ) |
6 |
|
lcoc0.r |
|- R = ( Base ` S ) |
7 |
2 6 3
|
lmod0cl |
|- ( M e. LMod -> .0. e. R ) |
8 |
7
|
ad2antrr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> .0. e. R ) |
9 |
8 5
|
fmptd |
|- ( ( M e. LMod /\ V e. ~P B ) -> F : V --> R ) |
10 |
6
|
fvexi |
|- R e. _V |
11 |
10
|
a1i |
|- ( M e. LMod -> R e. _V ) |
12 |
|
elmapg |
|- ( ( R e. _V /\ V e. ~P B ) -> ( F e. ( R ^m V ) <-> F : V --> R ) ) |
13 |
11 12
|
sylan |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F e. ( R ^m V ) <-> F : V --> R ) ) |
14 |
9 13
|
mpbird |
|- ( ( M e. LMod /\ V e. ~P B ) -> F e. ( R ^m V ) ) |
15 |
|
eqidd |
|- ( x = v -> .0. = .0. ) |
16 |
15
|
cbvmptv |
|- ( x e. V |-> .0. ) = ( v e. V |-> .0. ) |
17 |
5 16
|
eqtri |
|- F = ( v e. V |-> .0. ) |
18 |
|
simpr |
|- ( ( M e. LMod /\ V e. ~P B ) -> V e. ~P B ) |
19 |
3
|
fvexi |
|- .0. e. _V |
20 |
19
|
a1i |
|- ( ( M e. LMod /\ V e. ~P B ) -> .0. e. _V ) |
21 |
19
|
a1i |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> .0. e. _V ) |
22 |
17 18 20 21
|
mptsuppd |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F supp .0. ) = { v e. V | .0. =/= .0. } ) |
23 |
|
neirr |
|- -. .0. =/= .0. |
24 |
23
|
a1i |
|- ( ( M e. LMod /\ V e. ~P B ) -> -. .0. =/= .0. ) |
25 |
24
|
ralrimivw |
|- ( ( M e. LMod /\ V e. ~P B ) -> A. v e. V -. .0. =/= .0. ) |
26 |
|
rabeq0 |
|- ( { v e. V | .0. =/= .0. } = (/) <-> A. v e. V -. .0. =/= .0. ) |
27 |
25 26
|
sylibr |
|- ( ( M e. LMod /\ V e. ~P B ) -> { v e. V | .0. =/= .0. } = (/) ) |
28 |
|
0fin |
|- (/) e. Fin |
29 |
28
|
a1i |
|- ( ( M e. LMod /\ V e. ~P B ) -> (/) e. Fin ) |
30 |
27 29
|
eqeltrd |
|- ( ( M e. LMod /\ V e. ~P B ) -> { v e. V | .0. =/= .0. } e. Fin ) |
31 |
22 30
|
eqeltrd |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F supp .0. ) e. Fin ) |
32 |
5
|
funmpt2 |
|- Fun F |
33 |
32
|
a1i |
|- ( ( M e. LMod /\ V e. ~P B ) -> Fun F ) |
34 |
|
funisfsupp |
|- ( ( Fun F /\ F e. ( R ^m V ) /\ .0. e. _V ) -> ( F finSupp .0. <-> ( F supp .0. ) e. Fin ) ) |
35 |
33 14 20 34
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F finSupp .0. <-> ( F supp .0. ) e. Fin ) ) |
36 |
31 35
|
mpbird |
|- ( ( M e. LMod /\ V e. ~P B ) -> F finSupp .0. ) |
37 |
1 2 3 4 5
|
lincvalsc0 |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = Z ) |
38 |
14 36 37
|
3jca |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F e. ( R ^m V ) /\ F finSupp .0. /\ ( F ( linC ` M ) V ) = Z ) ) |