Metamath Proof Explorer


Theorem lcoc0

Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincvalsc0.b B = Base M
lincvalsc0.s S = Scalar M
lincvalsc0.0 0 ˙ = 0 S
lincvalsc0.z Z = 0 M
lincvalsc0.f F = x V 0 ˙
lcoc0.r R = Base S
Assertion lcoc0 M LMod V 𝒫 B F R V finSupp 0 ˙ F F linC M V = Z

Proof

Step Hyp Ref Expression
1 lincvalsc0.b B = Base M
2 lincvalsc0.s S = Scalar M
3 lincvalsc0.0 0 ˙ = 0 S
4 lincvalsc0.z Z = 0 M
5 lincvalsc0.f F = x V 0 ˙
6 lcoc0.r R = Base S
7 2 6 3 lmod0cl M LMod 0 ˙ R
8 7 ad2antrr M LMod V 𝒫 B x V 0 ˙ R
9 8 5 fmptd M LMod V 𝒫 B F : V R
10 6 fvexi R V
11 10 a1i M LMod R V
12 elmapg R V V 𝒫 B F R V F : V R
13 11 12 sylan M LMod V 𝒫 B F R V F : V R
14 9 13 mpbird M LMod V 𝒫 B F R V
15 eqidd x = v 0 ˙ = 0 ˙
16 15 cbvmptv x V 0 ˙ = v V 0 ˙
17 5 16 eqtri F = v V 0 ˙
18 simpr M LMod V 𝒫 B V 𝒫 B
19 3 fvexi 0 ˙ V
20 19 a1i M LMod V 𝒫 B 0 ˙ V
21 19 a1i M LMod V 𝒫 B v V 0 ˙ V
22 17 18 20 21 mptsuppd M LMod V 𝒫 B F supp 0 ˙ = v V | 0 ˙ 0 ˙
23 neirr ¬ 0 ˙ 0 ˙
24 23 a1i M LMod V 𝒫 B ¬ 0 ˙ 0 ˙
25 24 ralrimivw M LMod V 𝒫 B v V ¬ 0 ˙ 0 ˙
26 rabeq0 v V | 0 ˙ 0 ˙ = v V ¬ 0 ˙ 0 ˙
27 25 26 sylibr M LMod V 𝒫 B v V | 0 ˙ 0 ˙ =
28 0fin Fin
29 28 a1i M LMod V 𝒫 B Fin
30 27 29 eqeltrd M LMod V 𝒫 B v V | 0 ˙ 0 ˙ Fin
31 22 30 eqeltrd M LMod V 𝒫 B F supp 0 ˙ Fin
32 5 funmpt2 Fun F
33 32 a1i M LMod V 𝒫 B Fun F
34 funisfsupp Fun F F R V 0 ˙ V finSupp 0 ˙ F F supp 0 ˙ Fin
35 33 14 20 34 syl3anc M LMod V 𝒫 B finSupp 0 ˙ F F supp 0 ˙ Fin
36 31 35 mpbird M LMod V 𝒫 B finSupp 0 ˙ F
37 1 2 3 4 5 lincvalsc0 M LMod V 𝒫 B F linC M V = Z
38 14 36 37 3jca M LMod V 𝒫 B F R V finSupp 0 ˙ F F linC M V = Z