Metamath Proof Explorer


Theorem lincvalsc0

Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019)

Ref Expression
Hypotheses lincvalsc0.b B=BaseM
lincvalsc0.s S=ScalarM
lincvalsc0.0 0˙=0S
lincvalsc0.z Z=0M
lincvalsc0.f F=xV0˙
Assertion lincvalsc0 MLModV𝒫BFlinCMV=Z

Proof

Step Hyp Ref Expression
1 lincvalsc0.b B=BaseM
2 lincvalsc0.s S=ScalarM
3 lincvalsc0.0 0˙=0S
4 lincvalsc0.z Z=0M
5 lincvalsc0.f F=xV0˙
6 simpl MLModV𝒫BMLMod
7 2 eqcomi ScalarM=S
8 7 fveq2i BaseScalarM=BaseS
9 2 8 3 lmod0cl MLMod0˙BaseScalarM
10 9 adantr MLModV𝒫B0˙BaseScalarM
11 10 adantr MLModV𝒫BxV0˙BaseScalarM
12 11 5 fmptd MLModV𝒫BF:VBaseScalarM
13 fvexd MLModBaseScalarMV
14 elmapg BaseScalarMVV𝒫BFBaseScalarMVF:VBaseScalarM
15 13 14 sylan MLModV𝒫BFBaseScalarMVF:VBaseScalarM
16 12 15 mpbird MLModV𝒫BFBaseScalarMV
17 1 pweqi 𝒫B=𝒫BaseM
18 17 eleq2i V𝒫BV𝒫BaseM
19 18 biimpi V𝒫BV𝒫BaseM
20 19 adantl MLModV𝒫BV𝒫BaseM
21 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MvVFvMv
22 6 16 20 21 syl3anc MLModV𝒫BFlinCMV=MvVFvMv
23 simpr MLModV𝒫BvVvV
24 3 fvexi 0˙V
25 eqidd x=v0˙=0˙
26 25 5 fvmptg vV0˙VFv=0˙
27 23 24 26 sylancl MLModV𝒫BvVFv=0˙
28 27 oveq1d MLModV𝒫BvVFvMv=0˙Mv
29 6 adantr MLModV𝒫BvVMLMod
30 elelpwi vVV𝒫BvB
31 30 expcom V𝒫BvVvB
32 31 adantl MLModV𝒫BvVvB
33 32 imp MLModV𝒫BvVvB
34 eqid M=M
35 1 2 34 3 4 lmod0vs MLModvB0˙Mv=Z
36 29 33 35 syl2anc MLModV𝒫BvV0˙Mv=Z
37 28 36 eqtrd MLModV𝒫BvVFvMv=Z
38 37 mpteq2dva MLModV𝒫BvVFvMv=vVZ
39 38 oveq2d MLModV𝒫BMvVFvMv=MvVZ
40 lmodgrp MLModMGrp
41 40 grpmndd MLModMMnd
42 4 gsumz MMndV𝒫BMvVZ=Z
43 41 42 sylan MLModV𝒫BMvVZ=Z
44 22 39 43 3eqtrd MLModV𝒫BFlinCMV=Z