Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lincvalsc0.b | |
|
lincvalsc0.s | |
||
lincvalsc0.0 | |
||
lincvalsc0.z | |
||
lincvalsc0.f | |
||
Assertion | lincvalsc0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincvalsc0.b | |
|
2 | lincvalsc0.s | |
|
3 | lincvalsc0.0 | |
|
4 | lincvalsc0.z | |
|
5 | lincvalsc0.f | |
|
6 | simpl | |
|
7 | 2 | eqcomi | |
8 | 7 | fveq2i | |
9 | 2 8 3 | lmod0cl | |
10 | 9 | adantr | |
11 | 10 | adantr | |
12 | 11 5 | fmptd | |
13 | fvexd | |
|
14 | elmapg | |
|
15 | 13 14 | sylan | |
16 | 12 15 | mpbird | |
17 | 1 | pweqi | |
18 | 17 | eleq2i | |
19 | 18 | biimpi | |
20 | 19 | adantl | |
21 | lincval | |
|
22 | 6 16 20 21 | syl3anc | |
23 | simpr | |
|
24 | 3 | fvexi | |
25 | eqidd | |
|
26 | 25 5 | fvmptg | |
27 | 23 24 26 | sylancl | |
28 | 27 | oveq1d | |
29 | 6 | adantr | |
30 | elelpwi | |
|
31 | 30 | expcom | |
32 | 31 | adantl | |
33 | 32 | imp | |
34 | eqid | |
|
35 | 1 2 34 3 4 | lmod0vs | |
36 | 29 33 35 | syl2anc | |
37 | 28 36 | eqtrd | |
38 | 37 | mpteq2dva | |
39 | 38 | oveq2d | |
40 | lmodgrp | |
|
41 | 40 | grpmndd | |
42 | 4 | gsumz | |
43 | 41 42 | sylan | |
44 | 22 39 43 | 3eqtrd | |