| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincvalsc0.b |
|
| 2 |
|
lincvalsc0.s |
|
| 3 |
|
lincvalsc0.0 |
|
| 4 |
|
lincvalsc0.z |
|
| 5 |
|
lincvalsc0.f |
|
| 6 |
|
simpl |
|
| 7 |
2
|
eqcomi |
|
| 8 |
7
|
fveq2i |
|
| 9 |
2 8 3
|
lmod0cl |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
adantr |
|
| 12 |
11 5
|
fmptd |
|
| 13 |
|
fvexd |
|
| 14 |
|
elmapg |
|
| 15 |
13 14
|
sylan |
|
| 16 |
12 15
|
mpbird |
|
| 17 |
1
|
pweqi |
|
| 18 |
17
|
eleq2i |
|
| 19 |
18
|
biimpi |
|
| 20 |
19
|
adantl |
|
| 21 |
|
lincval |
|
| 22 |
6 16 20 21
|
syl3anc |
|
| 23 |
|
simpr |
|
| 24 |
3
|
fvexi |
|
| 25 |
|
eqidd |
|
| 26 |
25 5
|
fvmptg |
|
| 27 |
23 24 26
|
sylancl |
|
| 28 |
27
|
oveq1d |
|
| 29 |
6
|
adantr |
|
| 30 |
|
elelpwi |
|
| 31 |
30
|
expcom |
|
| 32 |
31
|
adantl |
|
| 33 |
32
|
imp |
|
| 34 |
|
eqid |
|
| 35 |
1 2 34 3 4
|
lmod0vs |
|
| 36 |
29 33 35
|
syl2anc |
|
| 37 |
28 36
|
eqtrd |
|
| 38 |
37
|
mpteq2dva |
|
| 39 |
38
|
oveq2d |
|
| 40 |
|
lmodgrp |
|
| 41 |
40
|
grpmndd |
|
| 42 |
4
|
gsumz |
|
| 43 |
41 42
|
sylan |
|
| 44 |
22 39 43
|
3eqtrd |
|