Metamath Proof Explorer


Theorem linc0scn0

Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019)

Ref Expression
Hypotheses linc0scn0.b
|- B = ( Base ` M )
linc0scn0.s
|- S = ( Scalar ` M )
linc0scn0.0
|- .0. = ( 0g ` S )
linc0scn0.1
|- .1. = ( 1r ` S )
linc0scn0.z
|- Z = ( 0g ` M )
linc0scn0.f
|- F = ( x e. V |-> if ( x = Z , .1. , .0. ) )
Assertion linc0scn0
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = Z )

Proof

Step Hyp Ref Expression
1 linc0scn0.b
 |-  B = ( Base ` M )
2 linc0scn0.s
 |-  S = ( Scalar ` M )
3 linc0scn0.0
 |-  .0. = ( 0g ` S )
4 linc0scn0.1
 |-  .1. = ( 1r ` S )
5 linc0scn0.z
 |-  Z = ( 0g ` M )
6 linc0scn0.f
 |-  F = ( x e. V |-> if ( x = Z , .1. , .0. ) )
7 simpl
 |-  ( ( M e. LMod /\ V e. ~P B ) -> M e. LMod )
8 2 lmodring
 |-  ( M e. LMod -> S e. Ring )
9 2 eqcomi
 |-  ( Scalar ` M ) = S
10 9 fveq2i
 |-  ( Base ` ( Scalar ` M ) ) = ( Base ` S )
11 10 4 ringidcl
 |-  ( S e. Ring -> .1. e. ( Base ` ( Scalar ` M ) ) )
12 10 3 ring0cl
 |-  ( S e. Ring -> .0. e. ( Base ` ( Scalar ` M ) ) )
13 11 12 jca
 |-  ( S e. Ring -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) )
14 8 13 syl
 |-  ( M e. LMod -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) )
15 14 ad2antrr
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) )
16 ifcl
 |-  ( ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) -> if ( x = Z , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) )
17 15 16 syl
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> if ( x = Z , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) )
18 17 6 fmptd
 |-  ( ( M e. LMod /\ V e. ~P B ) -> F : V --> ( Base ` ( Scalar ` M ) ) )
19 fvex
 |-  ( Base ` ( Scalar ` M ) ) e. _V
20 19 a1i
 |-  ( M e. LMod -> ( Base ` ( Scalar ` M ) ) e. _V )
21 elmapg
 |-  ( ( ( Base ` ( Scalar ` M ) ) e. _V /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) )
22 20 21 sylan
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) )
23 18 22 mpbird
 |-  ( ( M e. LMod /\ V e. ~P B ) -> F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) )
24 1 pweqi
 |-  ~P B = ~P ( Base ` M )
25 24 eleq2i
 |-  ( V e. ~P B <-> V e. ~P ( Base ` M ) )
26 25 biimpi
 |-  ( V e. ~P B -> V e. ~P ( Base ` M ) )
27 26 adantl
 |-  ( ( M e. LMod /\ V e. ~P B ) -> V e. ~P ( Base ` M ) )
28 lincval
 |-  ( ( M e. LMod /\ F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) )
29 7 23 27 28 syl3anc
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) )
30 simpr
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. V )
31 4 fvexi
 |-  .1. e. _V
32 3 fvexi
 |-  .0. e. _V
33 31 32 ifex
 |-  if ( v = Z , .1. , .0. ) e. _V
34 eqeq1
 |-  ( x = v -> ( x = Z <-> v = Z ) )
35 34 ifbid
 |-  ( x = v -> if ( x = Z , .1. , .0. ) = if ( v = Z , .1. , .0. ) )
36 35 6 fvmptg
 |-  ( ( v e. V /\ if ( v = Z , .1. , .0. ) e. _V ) -> ( F ` v ) = if ( v = Z , .1. , .0. ) )
37 30 33 36 sylancl
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( F ` v ) = if ( v = Z , .1. , .0. ) )
38 37 oveq1d
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) )
39 ovif
 |-  ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) = if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) )
40 39 a1i
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) = if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) ) )
41 oveq2
 |-  ( v = Z -> ( .1. ( .s ` M ) v ) = ( .1. ( .s ` M ) Z ) )
42 41 adantl
 |-  ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) v ) = ( .1. ( .s ` M ) Z ) )
43 eqid
 |-  ( Base ` S ) = ( Base ` S )
44 2 43 4 lmod1cl
 |-  ( M e. LMod -> .1. e. ( Base ` S ) )
45 44 ancli
 |-  ( M e. LMod -> ( M e. LMod /\ .1. e. ( Base ` S ) ) )
46 45 adantr
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( M e. LMod /\ .1. e. ( Base ` S ) ) )
47 46 ad2antrr
 |-  ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( M e. LMod /\ .1. e. ( Base ` S ) ) )
48 eqid
 |-  ( .s ` M ) = ( .s ` M )
49 2 48 43 5 lmodvs0
 |-  ( ( M e. LMod /\ .1. e. ( Base ` S ) ) -> ( .1. ( .s ` M ) Z ) = Z )
50 47 49 syl
 |-  ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) Z ) = Z )
51 42 50 eqtrd
 |-  ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) v ) = Z )
52 7 adantr
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> M e. LMod )
53 elelpwi
 |-  ( ( v e. V /\ V e. ~P B ) -> v e. B )
54 53 expcom
 |-  ( V e. ~P B -> ( v e. V -> v e. B ) )
55 54 adantl
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V -> v e. B ) )
56 55 imp
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. B )
57 1 2 48 3 5 lmod0vs
 |-  ( ( M e. LMod /\ v e. B ) -> ( .0. ( .s ` M ) v ) = Z )
58 52 56 57 syl2anc
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( .0. ( .s ` M ) v ) = Z )
59 58 adantr
 |-  ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ -. v = Z ) -> ( .0. ( .s ` M ) v ) = Z )
60 51 59 ifeqda
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) ) = Z )
61 38 40 60 3eqtrd
 |-  ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = Z )
62 61 mpteq2dva
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) = ( v e. V |-> Z ) )
63 62 oveq2d
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) = ( M gsum ( v e. V |-> Z ) ) )
64 lmodgrp
 |-  ( M e. LMod -> M e. Grp )
65 64 grpmndd
 |-  ( M e. LMod -> M e. Mnd )
66 5 gsumz
 |-  ( ( M e. Mnd /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z )
67 65 66 sylan
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z )
68 29 63 67 3eqtrd
 |-  ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = Z )