Step |
Hyp |
Ref |
Expression |
1 |
|
linc0scn0.b |
|- B = ( Base ` M ) |
2 |
|
linc0scn0.s |
|- S = ( Scalar ` M ) |
3 |
|
linc0scn0.0 |
|- .0. = ( 0g ` S ) |
4 |
|
linc0scn0.1 |
|- .1. = ( 1r ` S ) |
5 |
|
linc0scn0.z |
|- Z = ( 0g ` M ) |
6 |
|
linc0scn0.f |
|- F = ( x e. V |-> if ( x = Z , .1. , .0. ) ) |
7 |
|
simpl |
|- ( ( M e. LMod /\ V e. ~P B ) -> M e. LMod ) |
8 |
2
|
lmodring |
|- ( M e. LMod -> S e. Ring ) |
9 |
2
|
eqcomi |
|- ( Scalar ` M ) = S |
10 |
9
|
fveq2i |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` S ) |
11 |
10 4
|
ringidcl |
|- ( S e. Ring -> .1. e. ( Base ` ( Scalar ` M ) ) ) |
12 |
10 3
|
ring0cl |
|- ( S e. Ring -> .0. e. ( Base ` ( Scalar ` M ) ) ) |
13 |
11 12
|
jca |
|- ( S e. Ring -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
14 |
8 13
|
syl |
|- ( M e. LMod -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
15 |
14
|
ad2antrr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
16 |
|
ifcl |
|- ( ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) -> if ( x = Z , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) ) |
17 |
15 16
|
syl |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ x e. V ) -> if ( x = Z , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) ) |
18 |
17 6
|
fmptd |
|- ( ( M e. LMod /\ V e. ~P B ) -> F : V --> ( Base ` ( Scalar ` M ) ) ) |
19 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
20 |
19
|
a1i |
|- ( M e. LMod -> ( Base ` ( Scalar ` M ) ) e. _V ) |
21 |
|
elmapg |
|- ( ( ( Base ` ( Scalar ` M ) ) e. _V /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
22 |
20 21
|
sylan |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
23 |
18 22
|
mpbird |
|- ( ( M e. LMod /\ V e. ~P B ) -> F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
24 |
1
|
pweqi |
|- ~P B = ~P ( Base ` M ) |
25 |
24
|
eleq2i |
|- ( V e. ~P B <-> V e. ~P ( Base ` M ) ) |
26 |
25
|
biimpi |
|- ( V e. ~P B -> V e. ~P ( Base ` M ) ) |
27 |
26
|
adantl |
|- ( ( M e. LMod /\ V e. ~P B ) -> V e. ~P ( Base ` M ) ) |
28 |
|
lincval |
|- ( ( M e. LMod /\ F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
29 |
7 23 27 28
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
30 |
|
simpr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. V ) |
31 |
4
|
fvexi |
|- .1. e. _V |
32 |
3
|
fvexi |
|- .0. e. _V |
33 |
31 32
|
ifex |
|- if ( v = Z , .1. , .0. ) e. _V |
34 |
|
eqeq1 |
|- ( x = v -> ( x = Z <-> v = Z ) ) |
35 |
34
|
ifbid |
|- ( x = v -> if ( x = Z , .1. , .0. ) = if ( v = Z , .1. , .0. ) ) |
36 |
35 6
|
fvmptg |
|- ( ( v e. V /\ if ( v = Z , .1. , .0. ) e. _V ) -> ( F ` v ) = if ( v = Z , .1. , .0. ) ) |
37 |
30 33 36
|
sylancl |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( F ` v ) = if ( v = Z , .1. , .0. ) ) |
38 |
37
|
oveq1d |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) ) |
39 |
|
ovif |
|- ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) = if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) ) |
40 |
39
|
a1i |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( if ( v = Z , .1. , .0. ) ( .s ` M ) v ) = if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) ) ) |
41 |
|
oveq2 |
|- ( v = Z -> ( .1. ( .s ` M ) v ) = ( .1. ( .s ` M ) Z ) ) |
42 |
41
|
adantl |
|- ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) v ) = ( .1. ( .s ` M ) Z ) ) |
43 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
44 |
2 43 4
|
lmod1cl |
|- ( M e. LMod -> .1. e. ( Base ` S ) ) |
45 |
44
|
ancli |
|- ( M e. LMod -> ( M e. LMod /\ .1. e. ( Base ` S ) ) ) |
46 |
45
|
adantr |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M e. LMod /\ .1. e. ( Base ` S ) ) ) |
47 |
46
|
ad2antrr |
|- ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( M e. LMod /\ .1. e. ( Base ` S ) ) ) |
48 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
49 |
2 48 43 5
|
lmodvs0 |
|- ( ( M e. LMod /\ .1. e. ( Base ` S ) ) -> ( .1. ( .s ` M ) Z ) = Z ) |
50 |
47 49
|
syl |
|- ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) Z ) = Z ) |
51 |
42 50
|
eqtrd |
|- ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ v = Z ) -> ( .1. ( .s ` M ) v ) = Z ) |
52 |
7
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> M e. LMod ) |
53 |
|
elelpwi |
|- ( ( v e. V /\ V e. ~P B ) -> v e. B ) |
54 |
53
|
expcom |
|- ( V e. ~P B -> ( v e. V -> v e. B ) ) |
55 |
54
|
adantl |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V -> v e. B ) ) |
56 |
55
|
imp |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> v e. B ) |
57 |
1 2 48 3 5
|
lmod0vs |
|- ( ( M e. LMod /\ v e. B ) -> ( .0. ( .s ` M ) v ) = Z ) |
58 |
52 56 57
|
syl2anc |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( .0. ( .s ` M ) v ) = Z ) |
59 |
58
|
adantr |
|- ( ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) /\ -. v = Z ) -> ( .0. ( .s ` M ) v ) = Z ) |
60 |
51 59
|
ifeqda |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> if ( v = Z , ( .1. ( .s ` M ) v ) , ( .0. ( .s ` M ) v ) ) = Z ) |
61 |
38 40 60
|
3eqtrd |
|- ( ( ( M e. LMod /\ V e. ~P B ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) = Z ) |
62 |
61
|
mpteq2dva |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) = ( v e. V |-> Z ) ) |
63 |
62
|
oveq2d |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) = ( M gsum ( v e. V |-> Z ) ) ) |
64 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
65 |
64
|
grpmndd |
|- ( M e. LMod -> M e. Mnd ) |
66 |
5
|
gsumz |
|- ( ( M e. Mnd /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z ) |
67 |
65 66
|
sylan |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( M gsum ( v e. V |-> Z ) ) = Z ) |
68 |
29 63 67
|
3eqtrd |
|- ( ( M e. LMod /\ V e. ~P B ) -> ( F ( linC ` M ) V ) = Z ) |