Step |
Hyp |
Ref |
Expression |
1 |
|
linc0scn0.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
linc0scn0.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
3 |
|
linc0scn0.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
4 |
|
linc0scn0.1 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
5 |
|
linc0scn0.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
6 |
|
linc0scn0.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ if ( 𝑥 = 𝑍 , 1 , 0 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑀 ∈ LMod ) |
8 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → 𝑆 ∈ Ring ) |
9 |
2
|
eqcomi |
⊢ ( Scalar ‘ 𝑀 ) = 𝑆 |
10 |
9
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ 𝑆 ) |
11 |
10 4
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
12 |
10 3
|
ring0cl |
⊢ ( 𝑆 ∈ Ring → 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
13 |
11 12
|
jca |
⊢ ( 𝑆 ∈ Ring → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
14 |
8 13
|
syl |
⊢ ( 𝑀 ∈ LMod → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑉 ) → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
16 |
|
ifcl |
⊢ ( ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → if ( 𝑥 = 𝑍 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑉 ) → if ( 𝑥 = 𝑍 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
18 |
17 6
|
fmptd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
19 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
20 |
19
|
a1i |
⊢ ( 𝑀 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ) |
21 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
22 |
20 21
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
24 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
25 |
24
|
eleq2i |
⊢ ( 𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
26 |
25
|
biimpi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
28 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
29 |
7 23 27 28
|
syl3anc |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
30 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
31 |
4
|
fvexi |
⊢ 1 ∈ V |
32 |
3
|
fvexi |
⊢ 0 ∈ V |
33 |
31 32
|
ifex |
⊢ if ( 𝑣 = 𝑍 , 1 , 0 ) ∈ V |
34 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = 𝑍 ↔ 𝑣 = 𝑍 ) ) |
35 |
34
|
ifbid |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑍 , 1 , 0 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) ) |
36 |
35 6
|
fvmptg |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ if ( 𝑣 = 𝑍 , 1 , 0 ) ∈ V ) → ( 𝐹 ‘ 𝑣 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) ) |
37 |
30 33 36
|
sylancl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
39 |
|
ovif |
⊢ ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) , ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
40 |
39
|
a1i |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) , ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) |
41 |
|
oveq2 |
⊢ ( 𝑣 = 𝑍 → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑍 ) ) |
42 |
41
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑍 ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
44 |
2 43 4
|
lmod1cl |
⊢ ( 𝑀 ∈ LMod → 1 ∈ ( Base ‘ 𝑆 ) ) |
45 |
44
|
ancli |
⊢ ( 𝑀 ∈ LMod → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) ) |
48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
49 |
2 48 43 5
|
lmodvs0 |
⊢ ( ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑍 ) = 𝑍 ) |
50 |
47 49
|
syl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑍 ) = 𝑍 ) |
51 |
42 50
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑍 ) |
52 |
7
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
53 |
|
elelpwi |
⊢ ( ( 𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑣 ∈ 𝐵 ) |
54 |
53
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵 ) ) |
56 |
55
|
imp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝐵 ) |
57 |
1 2 48 3 5
|
lmod0vs |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵 ) → ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑍 ) |
58 |
52 56 57
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑍 ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) ∧ ¬ 𝑣 = 𝑍 ) → ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑍 ) |
60 |
51 59
|
ifeqda |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) , ( 0 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = 𝑍 ) |
61 |
38 40 60
|
3eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑍 ) |
62 |
61
|
mpteq2dva |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) = ( 𝑣 ∈ 𝑉 ↦ 𝑍 ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑣 ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) = ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ 𝑍 ) ) ) |
64 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
65 |
64
|
grpmndd |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd ) |
66 |
5
|
gsumz |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ 𝑍 ) ) = 𝑍 ) |
67 |
65 66
|
sylan |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝑉 ↦ 𝑍 ) ) = 𝑍 ) |
68 |
29 63 67
|
3eqtrd |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = 𝑍 ) |