Metamath Proof Explorer


Theorem linc0scn0

Description: If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019)

Ref Expression
Hypotheses linc0scn0.b 𝐵 = ( Base ‘ 𝑀 )
linc0scn0.s 𝑆 = ( Scalar ‘ 𝑀 )
linc0scn0.0 0 = ( 0g𝑆 )
linc0scn0.1 1 = ( 1r𝑆 )
linc0scn0.z 𝑍 = ( 0g𝑀 )
linc0scn0.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑍 , 1 , 0 ) )
Assertion linc0scn0 ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 linc0scn0.b 𝐵 = ( Base ‘ 𝑀 )
2 linc0scn0.s 𝑆 = ( Scalar ‘ 𝑀 )
3 linc0scn0.0 0 = ( 0g𝑆 )
4 linc0scn0.1 1 = ( 1r𝑆 )
5 linc0scn0.z 𝑍 = ( 0g𝑀 )
6 linc0scn0.f 𝐹 = ( 𝑥𝑉 ↦ if ( 𝑥 = 𝑍 , 1 , 0 ) )
7 simpl ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑀 ∈ LMod )
8 2 lmodring ( 𝑀 ∈ LMod → 𝑆 ∈ Ring )
9 2 eqcomi ( Scalar ‘ 𝑀 ) = 𝑆
10 9 fveq2i ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ 𝑆 )
11 10 4 ringidcl ( 𝑆 ∈ Ring → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
12 10 3 ring0cl ( 𝑆 ∈ Ring → 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
13 11 12 jca ( 𝑆 ∈ Ring → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
14 8 13 syl ( 𝑀 ∈ LMod → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
15 14 ad2antrr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑉 ) → ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
16 ifcl ( ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 0 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) → if ( 𝑥 = 𝑍 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
17 15 16 syl ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑥𝑉 ) → if ( 𝑥 = 𝑍 , 1 , 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
18 17 6 fmptd ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )
19 fvex ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V
20 19 a1i ( 𝑀 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V )
21 elmapg ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
22 20 21 sylan ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) )
23 18 22 mpbird ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) )
24 1 pweqi 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 )
25 24 eleq2i ( 𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
26 25 biimpi ( 𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
27 26 adantl ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) )
28 lincval ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
29 7 23 27 28 syl3anc ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) )
30 simpr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → 𝑣𝑉 )
31 4 fvexi 1 ∈ V
32 3 fvexi 0 ∈ V
33 31 32 ifex if ( 𝑣 = 𝑍 , 1 , 0 ) ∈ V
34 eqeq1 ( 𝑥 = 𝑣 → ( 𝑥 = 𝑍𝑣 = 𝑍 ) )
35 34 ifbid ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑍 , 1 , 0 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) )
36 35 6 fvmptg ( ( 𝑣𝑉 ∧ if ( 𝑣 = 𝑍 , 1 , 0 ) ∈ V ) → ( 𝐹𝑣 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) )
37 30 33 36 sylancl ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → ( 𝐹𝑣 ) = if ( 𝑣 = 𝑍 , 1 , 0 ) )
38 37 oveq1d ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) = ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠𝑀 ) 𝑣 ) )
39 ovif ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠𝑀 ) 𝑣 ) = if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠𝑀 ) 𝑣 ) , ( 0 ( ·𝑠𝑀 ) 𝑣 ) )
40 39 a1i ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → ( if ( 𝑣 = 𝑍 , 1 , 0 ) ( ·𝑠𝑀 ) 𝑣 ) = if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠𝑀 ) 𝑣 ) , ( 0 ( ·𝑠𝑀 ) 𝑣 ) ) )
41 oveq2 ( 𝑣 = 𝑍 → ( 1 ( ·𝑠𝑀 ) 𝑣 ) = ( 1 ( ·𝑠𝑀 ) 𝑍 ) )
42 41 adantl ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠𝑀 ) 𝑣 ) = ( 1 ( ·𝑠𝑀 ) 𝑍 ) )
43 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
44 2 43 4 lmod1cl ( 𝑀 ∈ LMod → 1 ∈ ( Base ‘ 𝑆 ) )
45 44 ancli ( 𝑀 ∈ LMod → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) )
46 45 adantr ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) )
47 46 ad2antrr ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) )
48 eqid ( ·𝑠𝑀 ) = ( ·𝑠𝑀 )
49 2 48 43 5 lmodvs0 ( ( 𝑀 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑆 ) ) → ( 1 ( ·𝑠𝑀 ) 𝑍 ) = 𝑍 )
50 47 49 syl ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠𝑀 ) 𝑍 ) = 𝑍 )
51 42 50 eqtrd ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) ∧ 𝑣 = 𝑍 ) → ( 1 ( ·𝑠𝑀 ) 𝑣 ) = 𝑍 )
52 7 adantr ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → 𝑀 ∈ LMod )
53 elelpwi ( ( 𝑣𝑉𝑉 ∈ 𝒫 𝐵 ) → 𝑣𝐵 )
54 53 expcom ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑣𝑉𝑣𝐵 ) )
55 54 adantl ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑣𝑉𝑣𝐵 ) )
56 55 imp ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → 𝑣𝐵 )
57 1 2 48 3 5 lmod0vs ( ( 𝑀 ∈ LMod ∧ 𝑣𝐵 ) → ( 0 ( ·𝑠𝑀 ) 𝑣 ) = 𝑍 )
58 52 56 57 syl2anc ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → ( 0 ( ·𝑠𝑀 ) 𝑣 ) = 𝑍 )
59 58 adantr ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) ∧ ¬ 𝑣 = 𝑍 ) → ( 0 ( ·𝑠𝑀 ) 𝑣 ) = 𝑍 )
60 51 59 ifeqda ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → if ( 𝑣 = 𝑍 , ( 1 ( ·𝑠𝑀 ) 𝑣 ) , ( 0 ( ·𝑠𝑀 ) 𝑣 ) ) = 𝑍 )
61 38 40 60 3eqtrd ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) ∧ 𝑣𝑉 ) → ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) = 𝑍 )
62 61 mpteq2dva ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) = ( 𝑣𝑉𝑍 ) )
63 62 oveq2d ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣𝑉 ↦ ( ( 𝐹𝑣 ) ( ·𝑠𝑀 ) 𝑣 ) ) ) = ( 𝑀 Σg ( 𝑣𝑉𝑍 ) ) )
64 lmodgrp ( 𝑀 ∈ LMod → 𝑀 ∈ Grp )
65 64 grpmndd ( 𝑀 ∈ LMod → 𝑀 ∈ Mnd )
66 5 gsumz ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣𝑉𝑍 ) ) = 𝑍 )
67 65 66 sylan ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 Σg ( 𝑣𝑉𝑍 ) ) = 𝑍 )
68 29 63 67 3eqtrd ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = 𝑍 )