Step |
Hyp |
Ref |
Expression |
1 |
|
lincdifsn.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincdifsn.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincdifsn.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
4 |
|
lincdifsn.t |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
5 |
|
lincdifsn.p |
⊢ + = ( +g ‘ 𝑀 ) |
6 |
|
lincdifsn.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
|
simp11 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝑀 ∈ LMod ) |
8 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
9 |
3 8
|
eqtri |
⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
10 |
9
|
oveq1i |
⊢ ( 𝑆 ↑m 𝑉 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) |
11 |
10
|
eleq2i |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ↔ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
12 |
11
|
biimpi |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ) |
15 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
16 |
15
|
eleq2i |
⊢ ( 𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
17 |
16
|
biimpi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
20 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑉 ) ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
21 |
7 14 19 20
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
22 |
|
lmodcmn |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ CMnd ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑀 ∈ CMnd ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝑀 ∈ CMnd ) |
25 |
|
simp12 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝑉 ∈ 𝒫 𝐵 ) |
26 |
17
|
anim2i |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
29 |
|
simp2l |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ) |
30 |
6
|
breq2i |
⊢ ( 𝐹 finSupp 0 ↔ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
31 |
30
|
biimpi |
⊢ ( 𝐹 finSupp 0 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
33 |
32
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
34 |
2 3
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
35 |
28 29 33 34
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
36 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ LMod ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑀 ∈ LMod ) |
38 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → 𝐹 : 𝑉 ⟶ 𝑆 ) |
39 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝑆 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
40 |
39
|
ex |
⊢ ( 𝐹 : 𝑉 ⟶ 𝑆 → ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) |
41 |
40
|
a1d |
⊢ ( 𝐹 : 𝑉 ⟶ 𝑆 → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
42 |
38 41
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
44 |
43
|
impcom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑥 ∈ 𝑉 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) ) |
45 |
44
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
46 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑥 ∈ 𝐵 ) |
47 |
46
|
expcom |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵 ) ) |
48 |
47
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵 ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝐵 ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝐵 ) |
51 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
52 |
1 2 51 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ∈ 𝐵 ) |
53 |
37 45 50 52
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ∈ 𝐵 ) |
54 |
53
|
3adantl3 |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ∈ 𝐵 ) |
55 |
|
simp13 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝑋 ∈ 𝑉 ) |
56 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ 𝑆 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) |
57 |
56
|
expcom |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐹 : 𝑉 ⟶ 𝑆 → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) ) |
58 |
57
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 : 𝑉 ⟶ 𝑆 → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) ) |
59 |
38 58
|
syl5com |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) ) |
61 |
60
|
impcom |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ) |
62 |
|
elelpwi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
63 |
62
|
ancoms |
⊢ ( ( 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐵 ) |
64 |
63
|
3adant1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝐵 ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → 𝑋 ∈ 𝐵 ) |
66 |
1 2 4 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑆 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ∈ 𝐵 ) |
67 |
36 61 65 66
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ∈ 𝐵 ) |
68 |
67
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ∈ 𝐵 ) |
69 |
4
|
eqcomi |
⊢ ( ·𝑠 ‘ 𝑀 ) = · |
70 |
69
|
a1i |
⊢ ( 𝑥 = 𝑋 → ( ·𝑠 ‘ 𝑀 ) = · ) |
71 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
72 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
73 |
70 71 72
|
oveq123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) |
74 |
73
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) ∧ 𝑥 = 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) |
75 |
1 5 24 25 35 54 55 68 74
|
gsumdifsnd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) ) |
76 |
|
fveq1 |
⊢ ( 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ‘ 𝑥 ) ) |
77 |
76
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ‘ 𝑥 ) ) |
78 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) → ( ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
79 |
77 78
|
sylan9eq |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
80 |
79
|
oveq1d |
⊢ ( ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) ∧ 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ) → ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) |
81 |
80
|
mpteq2dva |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) |
82 |
81
|
eqcomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) |
83 |
82
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
84 |
83
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) = ( ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) ) |
85 |
75 84
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑀 Σg ( 𝑥 ∈ 𝑉 ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) ) |
86 |
|
eqid |
⊢ 𝑉 = 𝑉 |
87 |
86 9
|
feq23i |
⊢ ( 𝐹 : 𝑉 ⟶ 𝑆 ↔ 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
88 |
38 87
|
sylib |
⊢ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
90 |
89
|
3ad2ant2 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
91 |
|
difssd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑉 ∖ { 𝑋 } ) ⊆ 𝑉 ) |
92 |
90 91
|
fssresd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
93 |
|
feq1 |
⊢ ( 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) → ( 𝐺 : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
94 |
93
|
3ad2ant3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐺 : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↔ ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
95 |
92 94
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐺 : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
96 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
97 |
|
difexg |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑉 ∖ { 𝑋 } ) ∈ V ) |
98 |
97
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑋 } ) ∈ V ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑉 ∖ { 𝑋 } ) ∈ V ) |
100 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ ( 𝑉 ∖ { 𝑋 } ) ∈ V ) → ( 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑉 ∖ { 𝑋 } ) ) ↔ 𝐺 : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
101 |
96 99 100
|
sylancr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑉 ∖ { 𝑋 } ) ) ↔ 𝐺 : ( 𝑉 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
102 |
95 101
|
mpbird |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑉 ∖ { 𝑋 } ) ) ) |
103 |
|
elpwi |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵 ) |
104 |
1
|
sseq2i |
⊢ ( 𝑉 ⊆ 𝐵 ↔ 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
105 |
104
|
biimpi |
⊢ ( 𝑉 ⊆ 𝐵 → 𝑉 ⊆ ( Base ‘ 𝑀 ) ) |
106 |
105
|
ssdifssd |
⊢ ( 𝑉 ⊆ 𝐵 → ( 𝑉 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
107 |
103 106
|
syl |
⊢ ( 𝑉 ∈ 𝒫 𝐵 → ( 𝑉 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
108 |
107
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑉 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
109 |
97
|
adantl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑉 ∖ { 𝑋 } ) ∈ V ) |
110 |
|
elpwg |
⊢ ( ( 𝑉 ∖ { 𝑋 } ) ∈ V → ( ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑉 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
111 |
109 110
|
syl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑉 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
112 |
108 111
|
mpbird |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ) → ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
113 |
112
|
3adant3 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
114 |
113
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
115 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑉 ∖ { 𝑋 } ) ) ∧ ( 𝑉 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑉 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
116 |
7 102 114 115
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑉 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) ) |
117 |
116
|
eqcomd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) = ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑉 ∖ { 𝑋 } ) ) ) |
118 |
117
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( ( 𝑀 Σg ( 𝑥 ∈ ( 𝑉 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑀 ) 𝑥 ) ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) = ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑉 ∖ { 𝑋 } ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) ) |
119 |
21 85 118
|
3eqtrd |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝐹 ∈ ( 𝑆 ↑m 𝑉 ) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = ( 𝐹 ↾ ( 𝑉 ∖ { 𝑋 } ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑉 ) = ( ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑉 ∖ { 𝑋 } ) ) + ( ( 𝐹 ‘ 𝑋 ) · 𝑋 ) ) ) |