Metamath Proof Explorer


Theorem lincdifsn

Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincdifsn.b B = Base M
lincdifsn.r R = Scalar M
lincdifsn.s S = Base R
lincdifsn.t · ˙ = M
lincdifsn.p + ˙ = + M
lincdifsn.0 0 ˙ = 0 R
Assertion lincdifsn M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F linC M V = G linC M V X + ˙ F X · ˙ X

Proof

Step Hyp Ref Expression
1 lincdifsn.b B = Base M
2 lincdifsn.r R = Scalar M
3 lincdifsn.s S = Base R
4 lincdifsn.t · ˙ = M
5 lincdifsn.p + ˙ = + M
6 lincdifsn.0 0 ˙ = 0 R
7 simp11 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M LMod
8 2 fveq2i Base R = Base Scalar M
9 3 8 eqtri S = Base Scalar M
10 9 oveq1i S V = Base Scalar M V
11 10 eleq2i F S V F Base Scalar M V
12 11 biimpi F S V F Base Scalar M V
13 12 adantr F S V finSupp 0 ˙ F F Base Scalar M V
14 13 3ad2ant2 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F Base Scalar M V
15 1 pweqi 𝒫 B = 𝒫 Base M
16 15 eleq2i V 𝒫 B V 𝒫 Base M
17 16 biimpi V 𝒫 B V 𝒫 Base M
18 17 3ad2ant2 M LMod V 𝒫 B X V V 𝒫 Base M
19 18 3ad2ant1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X V 𝒫 Base M
20 lincval M LMod F Base Scalar M V V 𝒫 Base M F linC M V = M x V F x M x
21 7 14 19 20 syl3anc M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F linC M V = M x V F x M x
22 lmodcmn M LMod M CMnd
23 22 3ad2ant1 M LMod V 𝒫 B X V M CMnd
24 23 3ad2ant1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M CMnd
25 simp12 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X V 𝒫 B
26 17 anim2i M LMod V 𝒫 B M LMod V 𝒫 Base M
27 26 3adant3 M LMod V 𝒫 B X V M LMod V 𝒫 Base M
28 27 3ad2ant1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M LMod V 𝒫 Base M
29 simp2l M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F S V
30 6 breq2i finSupp 0 ˙ F finSupp 0 R F
31 30 biimpi finSupp 0 ˙ F finSupp 0 R F
32 31 adantl F S V finSupp 0 ˙ F finSupp 0 R F
33 32 3ad2ant2 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X finSupp 0 R F
34 2 3 scmfsupp M LMod V 𝒫 Base M F S V finSupp 0 R F finSupp 0 M x V F x M x
35 28 29 33 34 syl3anc M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X finSupp 0 M x V F x M x
36 simpl1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F M LMod
37 36 adantr M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V M LMod
38 elmapi F S V F : V S
39 ffvelrn F : V S x V F x S
40 39 ex F : V S x V F x S
41 40 a1d F : V S M LMod V 𝒫 B X V x V F x S
42 38 41 syl F S V M LMod V 𝒫 B X V x V F x S
43 42 adantr F S V finSupp 0 ˙ F M LMod V 𝒫 B X V x V F x S
44 43 impcom M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V F x S
45 44 imp M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V F x S
46 elelpwi x V V 𝒫 B x B
47 46 expcom V 𝒫 B x V x B
48 47 3ad2ant2 M LMod V 𝒫 B X V x V x B
49 48 adantr M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V x B
50 49 imp M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V x B
51 eqid M = M
52 1 2 51 3 lmodvscl M LMod F x S x B F x M x B
53 37 45 50 52 syl3anc M LMod V 𝒫 B X V F S V finSupp 0 ˙ F x V F x M x B
54 53 3adantl3 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x V F x M x B
55 simp13 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X X V
56 ffvelrn F : V S X V F X S
57 56 expcom X V F : V S F X S
58 57 3ad2ant3 M LMod V 𝒫 B X V F : V S F X S
59 38 58 syl5com F S V M LMod V 𝒫 B X V F X S
60 59 adantr F S V finSupp 0 ˙ F M LMod V 𝒫 B X V F X S
61 60 impcom M LMod V 𝒫 B X V F S V finSupp 0 ˙ F F X S
62 elelpwi X V V 𝒫 B X B
63 62 ancoms V 𝒫 B X V X B
64 63 3adant1 M LMod V 𝒫 B X V X B
65 64 adantr M LMod V 𝒫 B X V F S V finSupp 0 ˙ F X B
66 1 2 4 3 lmodvscl M LMod F X S X B F X · ˙ X B
67 36 61 65 66 syl3anc M LMod V 𝒫 B X V F S V finSupp 0 ˙ F F X · ˙ X B
68 67 3adant3 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F X · ˙ X B
69 4 eqcomi M = · ˙
70 69 a1i x = X M = · ˙
71 fveq2 x = X F x = F X
72 id x = X x = X
73 70 71 72 oveq123d x = X F x M x = F X · ˙ X
74 73 adantl M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x = X F x M x = F X · ˙ X
75 1 5 24 25 35 54 55 68 74 gsumdifsnd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V F x M x = M x V X F x M x + ˙ F X · ˙ X
76 fveq1 G = F V X G x = F V X x
77 76 3ad2ant3 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G x = F V X x
78 fvres x V X F V X x = F x
79 77 78 sylan9eq M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x V X G x = F x
80 79 oveq1d M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x V X G x M x = F x M x
81 80 mpteq2dva M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x V X G x M x = x V X F x M x
82 81 eqcomd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X x V X F x M x = x V X G x M x
83 82 oveq2d M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V X F x M x = M x V X G x M x
84 83 oveq1d M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V X F x M x + ˙ F X · ˙ X = M x V X G x M x + ˙ F X · ˙ X
85 75 84 eqtrd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V F x M x = M x V X G x M x + ˙ F X · ˙ X
86 eqid V = V
87 86 9 feq23i F : V S F : V Base Scalar M
88 38 87 sylib F S V F : V Base Scalar M
89 88 adantr F S V finSupp 0 ˙ F F : V Base Scalar M
90 89 3ad2ant2 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F : V Base Scalar M
91 difssd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X V X V
92 90 91 fssresd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F V X : V X Base Scalar M
93 feq1 G = F V X G : V X Base Scalar M F V X : V X Base Scalar M
94 93 3ad2ant3 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G : V X Base Scalar M F V X : V X Base Scalar M
95 92 94 mpbird M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G : V X Base Scalar M
96 fvex Base Scalar M V
97 difexg V 𝒫 B V X V
98 97 3ad2ant2 M LMod V 𝒫 B X V V X V
99 98 3ad2ant1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X V X V
100 elmapg Base Scalar M V V X V G Base Scalar M V X G : V X Base Scalar M
101 96 99 100 sylancr M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G Base Scalar M V X G : V X Base Scalar M
102 95 101 mpbird M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G Base Scalar M V X
103 elpwi V 𝒫 B V B
104 1 sseq2i V B V Base M
105 104 biimpi V B V Base M
106 105 ssdifssd V B V X Base M
107 103 106 syl V 𝒫 B V X Base M
108 107 adantl M LMod V 𝒫 B V X Base M
109 97 adantl M LMod V 𝒫 B V X V
110 elpwg V X V V X 𝒫 Base M V X Base M
111 109 110 syl M LMod V 𝒫 B V X 𝒫 Base M V X Base M
112 108 111 mpbird M LMod V 𝒫 B V X 𝒫 Base M
113 112 3adant3 M LMod V 𝒫 B X V V X 𝒫 Base M
114 113 3ad2ant1 M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X V X 𝒫 Base M
115 lincval M LMod G Base Scalar M V X V X 𝒫 Base M G linC M V X = M x V X G x M x
116 7 102 114 115 syl3anc M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X G linC M V X = M x V X G x M x
117 116 eqcomd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V X G x M x = G linC M V X
118 117 oveq1d M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X M x V X G x M x + ˙ F X · ˙ X = G linC M V X + ˙ F X · ˙ X
119 21 85 118 3eqtrd M LMod V 𝒫 B X V F S V finSupp 0 ˙ F G = F V X F linC M V = G linC M V X + ˙ F X · ˙ X