Metamath Proof Explorer


Theorem linc1

Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypotheses linc1.b B = Base M
linc1.s S = Scalar M
linc1.0 0 ˙ = 0 S
linc1.1 1 ˙ = 1 S
linc1.f F = x V if x = X 1 ˙ 0 ˙
Assertion linc1 M LMod V 𝒫 B X V F linC M V = X

Proof

Step Hyp Ref Expression
1 linc1.b B = Base M
2 linc1.s S = Scalar M
3 linc1.0 0 ˙ = 0 S
4 linc1.1 1 ˙ = 1 S
5 linc1.f F = x V if x = X 1 ˙ 0 ˙
6 simp1 M LMod V 𝒫 B X V M LMod
7 2 lmodring M LMod S Ring
8 2 eqcomi Scalar M = S
9 8 fveq2i Base Scalar M = Base S
10 9 4 ringidcl S Ring 1 ˙ Base Scalar M
11 9 3 ring0cl S Ring 0 ˙ Base Scalar M
12 10 11 jca S Ring 1 ˙ Base Scalar M 0 ˙ Base Scalar M
13 7 12 syl M LMod 1 ˙ Base Scalar M 0 ˙ Base Scalar M
14 13 3ad2ant1 M LMod V 𝒫 B X V 1 ˙ Base Scalar M 0 ˙ Base Scalar M
15 14 adantr M LMod V 𝒫 B X V x V 1 ˙ Base Scalar M 0 ˙ Base Scalar M
16 ifcl 1 ˙ Base Scalar M 0 ˙ Base Scalar M if x = X 1 ˙ 0 ˙ Base Scalar M
17 15 16 syl M LMod V 𝒫 B X V x V if x = X 1 ˙ 0 ˙ Base Scalar M
18 17 5 fmptd M LMod V 𝒫 B X V F : V Base Scalar M
19 fvex Base Scalar M V
20 simp2 M LMod V 𝒫 B X V V 𝒫 B
21 elmapg Base Scalar M V V 𝒫 B F Base Scalar M V F : V Base Scalar M
22 19 20 21 sylancr M LMod V 𝒫 B X V F Base Scalar M V F : V Base Scalar M
23 18 22 mpbird M LMod V 𝒫 B X V F Base Scalar M V
24 1 pweqi 𝒫 B = 𝒫 Base M
25 24 eleq2i V 𝒫 B V 𝒫 Base M
26 25 biimpi V 𝒫 B V 𝒫 Base M
27 26 3ad2ant2 M LMod V 𝒫 B X V V 𝒫 Base M
28 lincval M LMod F Base Scalar M V V 𝒫 Base M F linC M V = M y V F y M y
29 6 23 27 28 syl3anc M LMod V 𝒫 B X V F linC M V = M y V F y M y
30 eqid 0 M = 0 M
31 lmodgrp M LMod M Grp
32 grpmnd M Grp M Mnd
33 31 32 syl M LMod M Mnd
34 33 3ad2ant1 M LMod V 𝒫 B X V M Mnd
35 simp3 M LMod V 𝒫 B X V X V
36 6 adantr M LMod V 𝒫 B X V y V M LMod
37 eqeq1 x = y x = X y = X
38 37 ifbid x = y if x = X 1 ˙ 0 ˙ = if y = X 1 ˙ 0 ˙
39 simpr M LMod V 𝒫 B X V y V y V
40 eqid Base S = Base S
41 2 40 4 lmod1cl M LMod 1 ˙ Base S
42 41 3ad2ant1 M LMod V 𝒫 B X V 1 ˙ Base S
43 42 adantr M LMod V 𝒫 B X V y V 1 ˙ Base S
44 2 40 3 lmod0cl M LMod 0 ˙ Base S
45 44 3ad2ant1 M LMod V 𝒫 B X V 0 ˙ Base S
46 45 adantr M LMod V 𝒫 B X V y V 0 ˙ Base S
47 43 46 ifcld M LMod V 𝒫 B X V y V if y = X 1 ˙ 0 ˙ Base S
48 5 38 39 47 fvmptd3 M LMod V 𝒫 B X V y V F y = if y = X 1 ˙ 0 ˙
49 48 47 eqeltrd M LMod V 𝒫 B X V y V F y Base S
50 elelpwi y V V 𝒫 B y B
51 50 expcom V 𝒫 B y V y B
52 51 3ad2ant2 M LMod V 𝒫 B X V y V y B
53 52 imp M LMod V 𝒫 B X V y V y B
54 eqid M = M
55 1 2 54 40 lmodvscl M LMod F y Base S y B F y M y B
56 36 49 53 55 syl3anc M LMod V 𝒫 B X V y V F y M y B
57 eqid y V F y M y = y V F y M y
58 56 57 fmptd M LMod V 𝒫 B X V y V F y M y : V B
59 fveq2 y = v F y = F v
60 id y = v y = v
61 59 60 oveq12d y = v F y M y = F v M v
62 61 cbvmptv y V F y M y = v V F v M v
63 fvexd M LMod V 𝒫 B X V 0 M V
64 ovexd M LMod V 𝒫 B X V v V F v M v V
65 62 20 63 64 mptsuppd M LMod V 𝒫 B X V y V F y M y supp 0 M = v V | F v M v 0 M
66 2a1 v = X M LMod V 𝒫 B X V v V F v M v 0 M v = X
67 simprr ¬ v = X M LMod V 𝒫 B X V v V v V
68 4 fvexi 1 ˙ V
69 3 fvexi 0 ˙ V
70 68 69 ifex if v = X 1 ˙ 0 ˙ V
71 eqeq1 x = v x = X v = X
72 71 ifbid x = v if x = X 1 ˙ 0 ˙ = if v = X 1 ˙ 0 ˙
73 72 5 fvmptg v V if v = X 1 ˙ 0 ˙ V F v = if v = X 1 ˙ 0 ˙
74 67 70 73 sylancl ¬ v = X M LMod V 𝒫 B X V v V F v = if v = X 1 ˙ 0 ˙
75 iffalse ¬ v = X if v = X 1 ˙ 0 ˙ = 0 ˙
76 75 adantr ¬ v = X M LMod V 𝒫 B X V v V if v = X 1 ˙ 0 ˙ = 0 ˙
77 74 76 eqtrd ¬ v = X M LMod V 𝒫 B X V v V F v = 0 ˙
78 77 oveq1d ¬ v = X M LMod V 𝒫 B X V v V F v M v = 0 ˙ M v
79 6 adantr M LMod V 𝒫 B X V v V M LMod
80 79 adantl ¬ v = X M LMod V 𝒫 B X V v V M LMod
81 elelpwi v V V 𝒫 B v B
82 81 expcom V 𝒫 B v V v B
83 82 3ad2ant2 M LMod V 𝒫 B X V v V v B
84 83 imp M LMod V 𝒫 B X V v V v B
85 84 adantl ¬ v = X M LMod V 𝒫 B X V v V v B
86 1 2 54 3 30 lmod0vs M LMod v B 0 ˙ M v = 0 M
87 80 85 86 syl2anc ¬ v = X M LMod V 𝒫 B X V v V 0 ˙ M v = 0 M
88 78 87 eqtrd ¬ v = X M LMod V 𝒫 B X V v V F v M v = 0 M
89 88 neeq1d ¬ v = X M LMod V 𝒫 B X V v V F v M v 0 M 0 M 0 M
90 eqneqall 0 M = 0 M 0 M 0 M v = X
91 30 90 ax-mp 0 M 0 M v = X
92 89 91 syl6bi ¬ v = X M LMod V 𝒫 B X V v V F v M v 0 M v = X
93 92 ex ¬ v = X M LMod V 𝒫 B X V v V F v M v 0 M v = X
94 66 93 pm2.61i M LMod V 𝒫 B X V v V F v M v 0 M v = X
95 94 ralrimiva M LMod V 𝒫 B X V v V F v M v 0 M v = X
96 rabsssn v V | F v M v 0 M X v V F v M v 0 M v = X
97 95 96 sylibr M LMod V 𝒫 B X V v V | F v M v 0 M X
98 65 97 eqsstrd M LMod V 𝒫 B X V y V F y M y supp 0 M X
99 1 30 34 20 35 58 98 gsumpt M LMod V 𝒫 B X V M y V F y M y = y V F y M y X
100 ovex F X M X V
101 fveq2 y = X F y = F X
102 id y = X y = X
103 101 102 oveq12d y = X F y M y = F X M X
104 103 57 fvmptg X V F X M X V y V F y M y X = F X M X
105 35 100 104 sylancl M LMod V 𝒫 B X V y V F y M y X = F X M X
106 iftrue x = X if x = X 1 ˙ 0 ˙ = 1 ˙
107 106 5 fvmptg X V 1 ˙ V F X = 1 ˙
108 35 68 107 sylancl M LMod V 𝒫 B X V F X = 1 ˙
109 108 oveq1d M LMod V 𝒫 B X V F X M X = 1 ˙ M X
110 elelpwi X V V 𝒫 B X B
111 110 ancoms V 𝒫 B X V X B
112 111 3adant1 M LMod V 𝒫 B X V X B
113 1 2 54 4 lmodvs1 M LMod X B 1 ˙ M X = X
114 6 112 113 syl2anc M LMod V 𝒫 B X V 1 ˙ M X = X
115 105 109 114 3eqtrd M LMod V 𝒫 B X V y V F y M y X = X
116 29 99 115 3eqtrd M LMod V 𝒫 B X V F linC M V = X