| Step |
Hyp |
Ref |
Expression |
| 1 |
|
linc1.b |
|- B = ( Base ` M ) |
| 2 |
|
linc1.s |
|- S = ( Scalar ` M ) |
| 3 |
|
linc1.0 |
|- .0. = ( 0g ` S ) |
| 4 |
|
linc1.1 |
|- .1. = ( 1r ` S ) |
| 5 |
|
linc1.f |
|- F = ( x e. V |-> if ( x = X , .1. , .0. ) ) |
| 6 |
|
simp1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> M e. LMod ) |
| 7 |
2
|
lmodring |
|- ( M e. LMod -> S e. Ring ) |
| 8 |
2
|
eqcomi |
|- ( Scalar ` M ) = S |
| 9 |
8
|
fveq2i |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` S ) |
| 10 |
9 4
|
ringidcl |
|- ( S e. Ring -> .1. e. ( Base ` ( Scalar ` M ) ) ) |
| 11 |
9 3
|
ring0cl |
|- ( S e. Ring -> .0. e. ( Base ` ( Scalar ` M ) ) ) |
| 12 |
10 11
|
jca |
|- ( S e. Ring -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
| 13 |
7 12
|
syl |
|- ( M e. LMod -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ x e. V ) -> ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) ) |
| 16 |
|
ifcl |
|- ( ( .1. e. ( Base ` ( Scalar ` M ) ) /\ .0. e. ( Base ` ( Scalar ` M ) ) ) -> if ( x = X , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) ) |
| 17 |
15 16
|
syl |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ x e. V ) -> if ( x = X , .1. , .0. ) e. ( Base ` ( Scalar ` M ) ) ) |
| 18 |
17 5
|
fmptd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F : V --> ( Base ` ( Scalar ` M ) ) ) |
| 19 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
| 20 |
|
simp2 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> V e. ~P B ) |
| 21 |
|
elmapg |
|- ( ( ( Base ` ( Scalar ` M ) ) e. _V /\ V e. ~P B ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
| 22 |
19 20 21
|
sylancr |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) <-> F : V --> ( Base ` ( Scalar ` M ) ) ) ) |
| 23 |
18 22
|
mpbird |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
| 24 |
1
|
pweqi |
|- ~P B = ~P ( Base ` M ) |
| 25 |
24
|
eleq2i |
|- ( V e. ~P B <-> V e. ~P ( Base ` M ) ) |
| 26 |
25
|
biimpi |
|- ( V e. ~P B -> V e. ~P ( Base ` M ) ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> V e. ~P ( Base ` M ) ) |
| 28 |
|
lincval |
|- ( ( M e. LMod /\ F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ) ) |
| 29 |
6 23 27 28
|
syl3anc |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F ( linC ` M ) V ) = ( M gsum ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ) ) |
| 30 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 31 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
| 32 |
31
|
grpmndd |
|- ( M e. LMod -> M e. Mnd ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> M e. Mnd ) |
| 34 |
|
simp3 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> X e. V ) |
| 35 |
6
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> M e. LMod ) |
| 36 |
|
eqeq1 |
|- ( x = y -> ( x = X <-> y = X ) ) |
| 37 |
36
|
ifbid |
|- ( x = y -> if ( x = X , .1. , .0. ) = if ( y = X , .1. , .0. ) ) |
| 38 |
|
simpr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> y e. V ) |
| 39 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 40 |
2 39 4
|
lmod1cl |
|- ( M e. LMod -> .1. e. ( Base ` S ) ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> .1. e. ( Base ` S ) ) |
| 42 |
41
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> .1. e. ( Base ` S ) ) |
| 43 |
2 39 3
|
lmod0cl |
|- ( M e. LMod -> .0. e. ( Base ` S ) ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> .0. e. ( Base ` S ) ) |
| 45 |
44
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> .0. e. ( Base ` S ) ) |
| 46 |
42 45
|
ifcld |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> if ( y = X , .1. , .0. ) e. ( Base ` S ) ) |
| 47 |
5 37 38 46
|
fvmptd3 |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> ( F ` y ) = if ( y = X , .1. , .0. ) ) |
| 48 |
47 46
|
eqeltrd |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> ( F ` y ) e. ( Base ` S ) ) |
| 49 |
|
elelpwi |
|- ( ( y e. V /\ V e. ~P B ) -> y e. B ) |
| 50 |
49
|
expcom |
|- ( V e. ~P B -> ( y e. V -> y e. B ) ) |
| 51 |
50
|
3ad2ant2 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( y e. V -> y e. B ) ) |
| 52 |
51
|
imp |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> y e. B ) |
| 53 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
| 54 |
1 2 53 39
|
lmodvscl |
|- ( ( M e. LMod /\ ( F ` y ) e. ( Base ` S ) /\ y e. B ) -> ( ( F ` y ) ( .s ` M ) y ) e. B ) |
| 55 |
35 48 52 54
|
syl3anc |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ y e. V ) -> ( ( F ` y ) ( .s ` M ) y ) e. B ) |
| 56 |
|
eqid |
|- ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) = ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) |
| 57 |
55 56
|
fmptd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) : V --> B ) |
| 58 |
|
fveq2 |
|- ( y = v -> ( F ` y ) = ( F ` v ) ) |
| 59 |
|
id |
|- ( y = v -> y = v ) |
| 60 |
58 59
|
oveq12d |
|- ( y = v -> ( ( F ` y ) ( .s ` M ) y ) = ( ( F ` v ) ( .s ` M ) v ) ) |
| 61 |
60
|
cbvmptv |
|- ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) = ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) |
| 62 |
|
fvexd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( 0g ` M ) e. _V ) |
| 63 |
|
ovexd |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> ( ( F ` v ) ( .s ` M ) v ) e. _V ) |
| 64 |
61 20 62 63
|
mptsuppd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) supp ( 0g ` M ) ) = { v e. V | ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) } ) |
| 65 |
|
2a1 |
|- ( v = X -> ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) ) |
| 66 |
|
simprr |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> v e. V ) |
| 67 |
4
|
fvexi |
|- .1. e. _V |
| 68 |
3
|
fvexi |
|- .0. e. _V |
| 69 |
67 68
|
ifex |
|- if ( v = X , .1. , .0. ) e. _V |
| 70 |
|
eqeq1 |
|- ( x = v -> ( x = X <-> v = X ) ) |
| 71 |
70
|
ifbid |
|- ( x = v -> if ( x = X , .1. , .0. ) = if ( v = X , .1. , .0. ) ) |
| 72 |
71 5
|
fvmptg |
|- ( ( v e. V /\ if ( v = X , .1. , .0. ) e. _V ) -> ( F ` v ) = if ( v = X , .1. , .0. ) ) |
| 73 |
66 69 72
|
sylancl |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( F ` v ) = if ( v = X , .1. , .0. ) ) |
| 74 |
|
iffalse |
|- ( -. v = X -> if ( v = X , .1. , .0. ) = .0. ) |
| 75 |
74
|
adantr |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> if ( v = X , .1. , .0. ) = .0. ) |
| 76 |
73 75
|
eqtrd |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( F ` v ) = .0. ) |
| 77 |
76
|
oveq1d |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( ( F ` v ) ( .s ` M ) v ) = ( .0. ( .s ` M ) v ) ) |
| 78 |
6
|
adantr |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> M e. LMod ) |
| 79 |
78
|
adantl |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> M e. LMod ) |
| 80 |
|
elelpwi |
|- ( ( v e. V /\ V e. ~P B ) -> v e. B ) |
| 81 |
80
|
expcom |
|- ( V e. ~P B -> ( v e. V -> v e. B ) ) |
| 82 |
81
|
3ad2ant2 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( v e. V -> v e. B ) ) |
| 83 |
82
|
imp |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> v e. B ) |
| 84 |
83
|
adantl |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> v e. B ) |
| 85 |
1 2 53 3 30
|
lmod0vs |
|- ( ( M e. LMod /\ v e. B ) -> ( .0. ( .s ` M ) v ) = ( 0g ` M ) ) |
| 86 |
79 84 85
|
syl2anc |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( .0. ( .s ` M ) v ) = ( 0g ` M ) ) |
| 87 |
77 86
|
eqtrd |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( ( F ` v ) ( .s ` M ) v ) = ( 0g ` M ) ) |
| 88 |
87
|
neeq1d |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) <-> ( 0g ` M ) =/= ( 0g ` M ) ) ) |
| 89 |
|
eqneqall |
|- ( ( 0g ` M ) = ( 0g ` M ) -> ( ( 0g ` M ) =/= ( 0g ` M ) -> v = X ) ) |
| 90 |
30 89
|
ax-mp |
|- ( ( 0g ` M ) =/= ( 0g ` M ) -> v = X ) |
| 91 |
88 90
|
biimtrdi |
|- ( ( -. v = X /\ ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) ) -> ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) |
| 92 |
91
|
ex |
|- ( -. v = X -> ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) ) |
| 93 |
65 92
|
pm2.61i |
|- ( ( ( M e. LMod /\ V e. ~P B /\ X e. V ) /\ v e. V ) -> ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) |
| 94 |
93
|
ralrimiva |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> A. v e. V ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) |
| 95 |
|
rabsssn |
|- ( { v e. V | ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) } C_ { X } <-> A. v e. V ( ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) -> v = X ) ) |
| 96 |
94 95
|
sylibr |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> { v e. V | ( ( F ` v ) ( .s ` M ) v ) =/= ( 0g ` M ) } C_ { X } ) |
| 97 |
64 96
|
eqsstrd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) supp ( 0g ` M ) ) C_ { X } ) |
| 98 |
1 30 33 20 34 57 97
|
gsumpt |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( M gsum ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ) = ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ` X ) ) |
| 99 |
|
ovex |
|- ( ( F ` X ) ( .s ` M ) X ) e. _V |
| 100 |
|
fveq2 |
|- ( y = X -> ( F ` y ) = ( F ` X ) ) |
| 101 |
|
id |
|- ( y = X -> y = X ) |
| 102 |
100 101
|
oveq12d |
|- ( y = X -> ( ( F ` y ) ( .s ` M ) y ) = ( ( F ` X ) ( .s ` M ) X ) ) |
| 103 |
102 56
|
fvmptg |
|- ( ( X e. V /\ ( ( F ` X ) ( .s ` M ) X ) e. _V ) -> ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ` X ) = ( ( F ` X ) ( .s ` M ) X ) ) |
| 104 |
34 99 103
|
sylancl |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ` X ) = ( ( F ` X ) ( .s ` M ) X ) ) |
| 105 |
|
iftrue |
|- ( x = X -> if ( x = X , .1. , .0. ) = .1. ) |
| 106 |
105 5
|
fvmptg |
|- ( ( X e. V /\ .1. e. _V ) -> ( F ` X ) = .1. ) |
| 107 |
34 67 106
|
sylancl |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F ` X ) = .1. ) |
| 108 |
107
|
oveq1d |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( ( F ` X ) ( .s ` M ) X ) = ( .1. ( .s ` M ) X ) ) |
| 109 |
|
elelpwi |
|- ( ( X e. V /\ V e. ~P B ) -> X e. B ) |
| 110 |
109
|
ancoms |
|- ( ( V e. ~P B /\ X e. V ) -> X e. B ) |
| 111 |
110
|
3adant1 |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> X e. B ) |
| 112 |
1 2 53 4
|
lmodvs1 |
|- ( ( M e. LMod /\ X e. B ) -> ( .1. ( .s ` M ) X ) = X ) |
| 113 |
6 111 112
|
syl2anc |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( .1. ( .s ` M ) X ) = X ) |
| 114 |
104 108 113
|
3eqtrd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( ( y e. V |-> ( ( F ` y ) ( .s ` M ) y ) ) ` X ) = X ) |
| 115 |
29 98 114
|
3eqtrd |
|- ( ( M e. LMod /\ V e. ~P B /\ X e. V ) -> ( F ( linC ` M ) V ) = X ) |