Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> M e. LMod ) |
2 |
|
simprl |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) ) |
3 |
|
ssexg |
|- ( ( V C_ S /\ S e. ( LSubSp ` M ) ) -> V e. _V ) |
4 |
3
|
ancoms |
|- ( ( S e. ( LSubSp ` M ) /\ V C_ S ) -> V e. _V ) |
5 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
6 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
7 |
5 6
|
lssss |
|- ( S e. ( LSubSp ` M ) -> S C_ ( Base ` M ) ) |
8 |
|
sstr |
|- ( ( V C_ S /\ S C_ ( Base ` M ) ) -> V C_ ( Base ` M ) ) |
9 |
|
elpwg |
|- ( V e. _V -> ( V e. ~P ( Base ` M ) <-> V C_ ( Base ` M ) ) ) |
10 |
8 9
|
syl5ibrcom |
|- ( ( V C_ S /\ S C_ ( Base ` M ) ) -> ( V e. _V -> V e. ~P ( Base ` M ) ) ) |
11 |
10
|
expcom |
|- ( S C_ ( Base ` M ) -> ( V C_ S -> ( V e. _V -> V e. ~P ( Base ` M ) ) ) ) |
12 |
7 11
|
syl |
|- ( S e. ( LSubSp ` M ) -> ( V C_ S -> ( V e. _V -> V e. ~P ( Base ` M ) ) ) ) |
13 |
12
|
imp |
|- ( ( S e. ( LSubSp ` M ) /\ V C_ S ) -> ( V e. _V -> V e. ~P ( Base ` M ) ) ) |
14 |
4 13
|
mpd |
|- ( ( S e. ( LSubSp ` M ) /\ V C_ S ) -> V e. ~P ( Base ` M ) ) |
15 |
14
|
3adant1 |
|- ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) -> V e. ~P ( Base ` M ) ) |
16 |
15
|
adantr |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> V e. ~P ( Base ` M ) ) |
17 |
|
lincval |
|- ( ( M e. LMod /\ F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ V e. ~P ( Base ` M ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
18 |
1 2 16 17
|
syl3anc |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> ( F ( linC ` M ) V ) = ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) ) |
19 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
20 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
21 |
6 19 20
|
gsumlsscl |
|- ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) -> ( ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) -> ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) e. S ) ) |
22 |
21
|
imp |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> ( M gsum ( v e. V |-> ( ( F ` v ) ( .s ` M ) v ) ) ) e. S ) |
23 |
18 22
|
eqeltrd |
|- ( ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) /\ ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) ) -> ( F ( linC ` M ) V ) e. S ) |
24 |
23
|
ex |
|- ( ( M e. LMod /\ S e. ( LSubSp ` M ) /\ V C_ S ) -> ( ( F e. ( ( Base ` ( Scalar ` M ) ) ^m V ) /\ F finSupp ( 0g ` ( Scalar ` M ) ) ) -> ( F ( linC ` M ) V ) e. S ) ) |