Step |
Hyp |
Ref |
Expression |
1 |
|
0elpw |
|- (/) e. ~P ( Base ` M ) |
2 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
3 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
4 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
5 |
2 3 4
|
lcoop |
|- ( ( M e. Mnd /\ (/) e. ~P ( Base ` M ) ) -> ( M LinCo (/) ) = { v e. ( Base ` M ) | E. w e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) } ) |
6 |
1 5
|
mpan2 |
|- ( M e. Mnd -> ( M LinCo (/) ) = { v e. ( Base ` M ) | E. w e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) } ) |
7 |
|
fvex |
|- ( Base ` ( Scalar ` M ) ) e. _V |
8 |
|
map0e |
|- ( ( Base ` ( Scalar ` M ) ) e. _V -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
9 |
7 8
|
mp1i |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = 1o ) |
10 |
|
df1o2 |
|- 1o = { (/) } |
11 |
9 10
|
eqtrdi |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( ( Base ` ( Scalar ` M ) ) ^m (/) ) = { (/) } ) |
12 |
11
|
rexeqdv |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( E. w e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> E. w e. { (/) } ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) ) ) |
13 |
|
lincval0 |
|- ( M e. Mnd -> ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) |
14 |
13
|
adantr |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( (/) ( linC ` M ) (/) ) = ( 0g ` M ) ) |
15 |
14
|
eqeq2d |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( v = ( (/) ( linC ` M ) (/) ) <-> v = ( 0g ` M ) ) ) |
16 |
15
|
anbi2d |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( ( (/) e. Fin /\ v = ( (/) ( linC ` M ) (/) ) ) <-> ( (/) e. Fin /\ v = ( 0g ` M ) ) ) ) |
17 |
|
0ex |
|- (/) e. _V |
18 |
|
breq1 |
|- ( w = (/) -> ( w finSupp ( 0g ` ( Scalar ` M ) ) <-> (/) finSupp ( 0g ` ( Scalar ` M ) ) ) ) |
19 |
|
fvex |
|- ( 0g ` ( Scalar ` M ) ) e. _V |
20 |
|
0fsupp |
|- ( ( 0g ` ( Scalar ` M ) ) e. _V -> (/) finSupp ( 0g ` ( Scalar ` M ) ) ) |
21 |
19 20
|
ax-mp |
|- (/) finSupp ( 0g ` ( Scalar ` M ) ) |
22 |
|
0fin |
|- (/) e. Fin |
23 |
21 22
|
2th |
|- ( (/) finSupp ( 0g ` ( Scalar ` M ) ) <-> (/) e. Fin ) |
24 |
18 23
|
bitrdi |
|- ( w = (/) -> ( w finSupp ( 0g ` ( Scalar ` M ) ) <-> (/) e. Fin ) ) |
25 |
|
oveq1 |
|- ( w = (/) -> ( w ( linC ` M ) (/) ) = ( (/) ( linC ` M ) (/) ) ) |
26 |
25
|
eqeq2d |
|- ( w = (/) -> ( v = ( w ( linC ` M ) (/) ) <-> v = ( (/) ( linC ` M ) (/) ) ) ) |
27 |
24 26
|
anbi12d |
|- ( w = (/) -> ( ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> ( (/) e. Fin /\ v = ( (/) ( linC ` M ) (/) ) ) ) ) |
28 |
27
|
rexsng |
|- ( (/) e. _V -> ( E. w e. { (/) } ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> ( (/) e. Fin /\ v = ( (/) ( linC ` M ) (/) ) ) ) ) |
29 |
17 28
|
mp1i |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( E. w e. { (/) } ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> ( (/) e. Fin /\ v = ( (/) ( linC ` M ) (/) ) ) ) ) |
30 |
22
|
a1i |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> (/) e. Fin ) |
31 |
30
|
biantrurd |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( v = ( 0g ` M ) <-> ( (/) e. Fin /\ v = ( 0g ` M ) ) ) ) |
32 |
16 29 31
|
3bitr4d |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( E. w e. { (/) } ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> v = ( 0g ` M ) ) ) |
33 |
12 32
|
bitrd |
|- ( ( M e. Mnd /\ v e. ( Base ` M ) ) -> ( E. w e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) <-> v = ( 0g ` M ) ) ) |
34 |
33
|
rabbidva |
|- ( M e. Mnd -> { v e. ( Base ` M ) | E. w e. ( ( Base ` ( Scalar ` M ) ) ^m (/) ) ( w finSupp ( 0g ` ( Scalar ` M ) ) /\ v = ( w ( linC ` M ) (/) ) ) } = { v e. ( Base ` M ) | v = ( 0g ` M ) } ) |
35 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
36 |
2 35
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. ( Base ` M ) ) |
37 |
|
rabsn |
|- ( ( 0g ` M ) e. ( Base ` M ) -> { v e. ( Base ` M ) | v = ( 0g ` M ) } = { ( 0g ` M ) } ) |
38 |
36 37
|
syl |
|- ( M e. Mnd -> { v e. ( Base ` M ) | v = ( 0g ` M ) } = { ( 0g ` M ) } ) |
39 |
6 34 38
|
3eqtrd |
|- ( M e. Mnd -> ( M LinCo (/) ) = { ( 0g ` M ) } ) |